On the maximal displacement of critical branching random walk

We consider a branching random walk initiated by a single particle at location 0 in which particles alternately reproduce according to the law of a Galton-Watson process and disperse according to the law of a driftless random walk on the integers. When the offspring distribution has mean 1 the branc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2015-06, Vol.162 (1-2), p.71-96
Hauptverfasser: Lalley, Steven P., Shao, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a branching random walk initiated by a single particle at location 0 in which particles alternately reproduce according to the law of a Galton-Watson process and disperse according to the law of a driftless random walk on the integers. When the offspring distribution has mean 1 the branching process is critical, and therefore dies out with probability 1 . We prove that if the particle jump distribution has mean zero, positive finite variance η 2 , and finite 4 + ε moment, and if the offspring distribution has positive variance σ 2 and finite third moment then the distribution of the rightmost position M reached by a particle of the branching random walk satisfies P { M ≥ x } ∼ 6 η 2 / ( σ 2 x 2 ) as x → ∞ . We also prove a conditional limit theorem for the distribution of the rightmost particle location at time n given that the process survives for n generations.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-014-0566-8