Random random walks on Z2d

We consider random walks on classes of graphs defined on the d-dimensional binary cube ℤ2d by placing edges on n randomly chosen parallel classes of vectors. The mixing time of a graph is the number of steps of a random walk before the walk forgets where it started, and reaches a random location. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 1997-08, Vol.108 (4), p.441-457
1. Verfasser: WILSON, D. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider random walks on classes of graphs defined on the d-dimensional binary cube ℤ2d by placing edges on n randomly chosen parallel classes of vectors. The mixing time of a graph is the number of steps of a random walk before the walk forgets where it started, and reaches a random location. In this paper we resolve a question of Diaconis by finding exact expressions for this mixing time that hold for all n>d and almost all choices of vector classes. This result improves a number of previous bounds. Our method, which has application to similar problems on other Abelian groups, uses the concept of a universal hash function, from computer science.
ISSN:0178-8051
1432-2064
DOI:10.1007/s004400050116