Large and moderate deviations for intersection local times

We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2004-02, Vol.128 (2), p.213-254
Hauptverfasser: Chen, Xia, Li, Wenbo V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 2
container_start_page 213
container_title Probability theory and related fields
container_volume 128
creator Chen, Xia
Li, Wenbo V.
description We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csorgo, Shi and Yor (1999) for self intersection local times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975) and Mansmann (1991), and some general methods developed along the line of probability in Banach space. Our treatment in the case of random walks also involves rescaling, spectral representation and invariance principle. The law of the iterated logarithm for intersection local times is given as an application of our deviation results. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00440-003-0298-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661272243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>674941721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a5568edd996fb2a5433a0589eeab8b091a82e70ae93279d94dda3ef89b8aa3923</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsEZ_gLegeFyd_cruepPiFxS86HmZZCeS0iZ1NxX896a04MnTwPC87zAPY5cCbgWAvcsAWgMHUBykd9wesZnQSnIJlT5mMxDWcQdGnLKznJcAIJWWM3a_wPRJJfaxXA-REo5URvrucOyGPpftkMquHyllanabcjU0uCrHbk35nJ20uMp0cZgF-3h6fJ-_8MXb8-v8YcEbZcXI0ZjKUYzeV20t0WilEIzzRFi7GrxAJ8kCklfS-uh1jKiodb52iMpLVbDrfe8mDV9bymNYDtvUTyeDrCohrZRTZ8Gu_qWUksaBMBMk9lCThpwTtWGTujWmnyAg7DyGvccweQw7j8FOmZtDMebp9zZh33T5L2i0qcBK9QtsYnEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233258015</pqid></control><display><type>article</type><title>Large and moderate deviations for intersection local times</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Chen, Xia ; Li, Wenbo V.</creator><creatorcontrib>Chen, Xia ; Li, Wenbo V.</creatorcontrib><description>We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csorgo, Shi and Yor (1999) for self intersection local times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975) and Mansmann (1991), and some general methods developed along the line of probability in Banach space. Our treatment in the case of random walks also involves rescaling, spectral representation and invariance principle. The law of the iterated logarithm for intersection local times is given as an application of our deviation results. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-003-0298-7</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Approximation ; Banach spaces ; Behavior ; Brownian motion ; Deviation ; Exact sciences and technology ; Intersections ; Limit theorems ; Markov processes ; Mathematical analysis ; Mathematics ; Polymers ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; Quantum field theory ; Random walk ; Random walk theory ; Rescaling ; Sciences and techniques of general use ; Standard deviation ; Stochastic processes ; Studies</subject><ispartof>Probability theory and related fields, 2004-02, Vol.128 (2), p.213-254</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Springer-Verlag 2004</rights><rights>Springer-Verlag Berlin Heidelberg 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a5568edd996fb2a5433a0589eeab8b091a82e70ae93279d94dda3ef89b8aa3923</citedby><cites>FETCH-LOGICAL-c371t-a5568edd996fb2a5433a0589eeab8b091a82e70ae93279d94dda3ef89b8aa3923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15456072$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xia</creatorcontrib><creatorcontrib>Li, Wenbo V.</creatorcontrib><title>Large and moderate deviations for intersection local times</title><title>Probability theory and related fields</title><description>We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csorgo, Shi and Yor (1999) for self intersection local times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975) and Mansmann (1991), and some general methods developed along the line of probability in Banach space. Our treatment in the case of random walks also involves rescaling, spectral representation and invariance principle. The law of the iterated logarithm for intersection local times is given as an application of our deviation results. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Banach spaces</subject><subject>Behavior</subject><subject>Brownian motion</subject><subject>Deviation</subject><subject>Exact sciences and technology</subject><subject>Intersections</subject><subject>Limit theorems</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Polymers</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>Quantum field theory</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Rescaling</subject><subject>Sciences and techniques of general use</subject><subject>Standard deviation</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRsEZ_gLegeFyd_cruepPiFxS86HmZZCeS0iZ1NxX896a04MnTwPC87zAPY5cCbgWAvcsAWgMHUBykd9wesZnQSnIJlT5mMxDWcQdGnLKznJcAIJWWM3a_wPRJJfaxXA-REo5URvrucOyGPpftkMquHyllanabcjU0uCrHbk35nJ20uMp0cZgF-3h6fJ-_8MXb8-v8YcEbZcXI0ZjKUYzeV20t0WilEIzzRFi7GrxAJ8kCklfS-uh1jKiodb52iMpLVbDrfe8mDV9bymNYDtvUTyeDrCohrZRTZ8Gu_qWUksaBMBMk9lCThpwTtWGTujWmnyAg7DyGvccweQw7j8FOmZtDMebp9zZh33T5L2i0qcBK9QtsYnEZ</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Chen, Xia</creator><creator>Li, Wenbo V.</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040201</creationdate><title>Large and moderate deviations for intersection local times</title><author>Chen, Xia ; Li, Wenbo V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a5568edd996fb2a5433a0589eeab8b091a82e70ae93279d94dda3ef89b8aa3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Banach spaces</topic><topic>Behavior</topic><topic>Brownian motion</topic><topic>Deviation</topic><topic>Exact sciences and technology</topic><topic>Intersections</topic><topic>Limit theorems</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Polymers</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>Quantum field theory</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Rescaling</topic><topic>Sciences and techniques of general use</topic><topic>Standard deviation</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xia</creatorcontrib><creatorcontrib>Li, Wenbo V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xia</au><au>Li, Wenbo V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large and moderate deviations for intersection local times</atitle><jtitle>Probability theory and related fields</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>128</volume><issue>2</issue><spage>213</spage><epage>254</epage><pages>213-254</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csorgo, Shi and Yor (1999) for self intersection local times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975) and Mansmann (1991), and some general methods developed along the line of probability in Banach space. Our treatment in the case of random walks also involves rescaling, spectral representation and invariance principle. The law of the iterated logarithm for intersection local times is given as an application of our deviation results. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00440-003-0298-7</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2004-02, Vol.128 (2), p.213-254
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661272243
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Approximation
Banach spaces
Behavior
Brownian motion
Deviation
Exact sciences and technology
Intersections
Limit theorems
Markov processes
Mathematical analysis
Mathematics
Polymers
Probability
Probability and statistics
Probability theory and stochastic processes
Probability theory on algebraic and topological structures
Quantum field theory
Random walk
Random walk theory
Rescaling
Sciences and techniques of general use
Standard deviation
Stochastic processes
Studies
title Large and moderate deviations for intersection local times
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20and%20moderate%20deviations%20for%20intersection%20local%20times&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Chen,%20Xia&rft.date=2004-02-01&rft.volume=128&rft.issue=2&rft.spage=213&rft.epage=254&rft.pages=213-254&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-003-0298-7&rft_dat=%3Cproquest_cross%3E674941721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233258015&rft_id=info:pmid/&rfr_iscdi=true