Large and moderate deviations for intersection local times

We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2004-02, Vol.128 (2), p.213-254
Hauptverfasser: Chen, Xia, Li, Wenbo V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csorgo, Shi and Yor (1999) for self intersection local times of Brownian bridges. Our approach relies on a Feynman-Kac type large deviation for Brownian occupation time, certain localization techniques from Donsker-Varadhan (1975) and Mansmann (1991), and some general methods developed along the line of probability in Banach space. Our treatment in the case of random walks also involves rescaling, spectral representation and invariance principle. The law of the iterated logarithm for intersection local times is given as an application of our deviation results. [PUBLICATION ABSTRACT]
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-003-0298-7