Euclidean models of first-passage percolation
We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of ℝd. Compared to standard FPP on ℤd, these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theo...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 1997-06, Vol.108 (2), p.153-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of ℝd. Compared to standard FPP on ℤd, these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theorem (where isotropy implies an exact Euclidean ball for the asymptotic shape) and nonexistence of certain doubly infinite geodesics (where isotropy yields a stronger result than in standard FPP). |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s004400050105 |