Euclidean models of first-passage percolation

We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of ℝd. Compared to standard FPP on ℤd, these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 1997-06, Vol.108 (2), p.153-170
Hauptverfasser: Douglas, Howard C, Newman, Charles M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new family of first-passage percolation (FPP) models in the context of Poisson-Voronoi tesselations of ℝd. Compared to standard FPP on ℤd, these models have some technical complications but also have the advantage of statistical isotropy. We prove two almost sure results: a shape theorem (where isotropy implies an exact Euclidean ball for the asymptotic shape) and nonexistence of certain doubly infinite geodesics (where isotropy yields a stronger result than in standard FPP).
ISSN:0178-8051
1432-2064
DOI:10.1007/s004400050105