A new inductive approach to the lace expansion for self-avoiding walks
We introduce a new inductive approach to the lace expansion, and apply it to prove Gaussian behaviour for the weakly self-avoiding walk on ℤd where loops of length m are penalised by a factor e−β/m p (04, p≥0; (2) d≤4, . In particular, we derive results first obtained by Brydges and Spencer (and rev...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 1998-06, Vol.111 (2), p.253-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new inductive approach to the lace expansion, and apply it to prove Gaussian behaviour for the weakly self-avoiding walk on ℤd where loops of length m are penalised by a factor e−β/m p (04, p≥0; (2) d≤4, . In particular, we derive results first obtained by Brydges and Spencer (and revisited by other authors) for the case d>4, p=0. In addition, we prove a local central limit theorem, with the exception of the case d>4, p=0. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s004400050168 |