The chaotic-representation property for a class of normal martingales

Suppose Z=(Zt)t>/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2007-11, Vol.139 (3-4), p.543-562
Hauptverfasser: ATTAL, Stéphane, BELTON, Alexander C. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 3-4
container_start_page 543
container_title Probability theory and related fields
container_volume 139
creator ATTAL, Stéphane
BELTON, Alexander C. R
description Suppose Z=(Zt)t>/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaotic-representation property and is strongly Markovian (in an appropriate sense). If also beta is bounded away from the endpoints 0 and 2 on every compact subinterval of [0,infinity] then Z is shown to have locally bounded trajectories, a variation on a result of Russo and Vallois.
doi_str_mv 10.1007/s00440-006-0052-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661271994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661271994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-48049579b131b2bdba44d8f4260f9206d26a7ee40d091850d96b263542d6e4ca3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsEKPh_BHHGVHVAlIlljJbjuPQVGkcbHdofz2uWomJ4XTL-3H3IHRP4ZkClC8RQAggADJPwcjhAk2o4IwwkOISTYCWiigo6DW6iXEDAIwLNkHz1dphuzY-dZYENwYX3ZBM6vyAx-BHF9Ietz5gg21vYsS-xYMPW9PjrQmpG75N7-ItumpNH93deU_R12K-mr2T5efbx-x1SSwveSJCgaiKsqoppzWrm9oI0ahWMAltlQ9tmDSlcwIaqKgqoKlkzSQvBGukE9bwKXo85ebTfnYuJr3xuzDkSs2kpKykVSWy6uFfFeesUKBUFtGTyAYfY3CtHkOXX9prCvqIVJ-Q6oxUH5HqQ_Y8nYNNtKZvgxlsF_-MKpdnzvwXAtd0vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233258088</pqid></control><display><type>article</type><title>The chaotic-representation property for a class of normal martingales</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>ATTAL, Stéphane ; BELTON, Alexander C. R</creator><creatorcontrib>ATTAL, Stéphane ; BELTON, Alexander C. R</creatorcontrib><description>Suppose Z=(Zt)t&gt;/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaotic-representation property and is strongly Markovian (in an appropriate sense). If also beta is bounded away from the endpoints 0 and 2 on every compact subinterval of [0,infinity] then Z is shown to have locally bounded trajectories, a variation on a result of Russo and Vallois.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-006-0052-z</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algebra ; Applied mathematics ; Control theory ; Exact sciences and technology ; General topics ; Inference from stochastic processes; time series analysis ; Martingales ; Mathematical functions ; Mathematical models ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Representations ; Sciences and techniques of general use ; Statistics ; Stochastic processes ; Studies</subject><ispartof>Probability theory and related fields, 2007-11, Vol.139 (3-4), p.543-562</ispartof><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-48049579b131b2bdba44d8f4260f9206d26a7ee40d091850d96b263542d6e4ca3</citedby><cites>FETCH-LOGICAL-c373t-48049579b131b2bdba44d8f4260f9206d26a7ee40d091850d96b263542d6e4ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18943178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ATTAL, Stéphane</creatorcontrib><creatorcontrib>BELTON, Alexander C. R</creatorcontrib><title>The chaotic-representation property for a class of normal martingales</title><title>Probability theory and related fields</title><description>Suppose Z=(Zt)t&gt;/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaotic-representation property and is strongly Markovian (in an appropriate sense). If also beta is bounded away from the endpoints 0 and 2 on every compact subinterval of [0,infinity] then Z is shown to have locally bounded trajectories, a variation on a result of Russo and Vallois.</description><subject>Algebra</subject><subject>Applied mathematics</subject><subject>Control theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Martingales</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsEKPh_BHHGVHVAlIlljJbjuPQVGkcbHdofz2uWomJ4XTL-3H3IHRP4ZkClC8RQAggADJPwcjhAk2o4IwwkOISTYCWiigo6DW6iXEDAIwLNkHz1dphuzY-dZYENwYX3ZBM6vyAx-BHF9Ietz5gg21vYsS-xYMPW9PjrQmpG75N7-ItumpNH93deU_R12K-mr2T5efbx-x1SSwveSJCgaiKsqoppzWrm9oI0ahWMAltlQ9tmDSlcwIaqKgqoKlkzSQvBGukE9bwKXo85ebTfnYuJr3xuzDkSs2kpKykVSWy6uFfFeesUKBUFtGTyAYfY3CtHkOXX9prCvqIVJ-Q6oxUH5HqQ_Y8nYNNtKZvgxlsF_-MKpdnzvwXAtd0vw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>ATTAL, Stéphane</creator><creator>BELTON, Alexander C. R</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20071101</creationdate><title>The chaotic-representation property for a class of normal martingales</title><author>ATTAL, Stéphane ; BELTON, Alexander C. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-48049579b131b2bdba44d8f4260f9206d26a7ee40d091850d96b263542d6e4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Applied mathematics</topic><topic>Control theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Martingales</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ATTAL, Stéphane</creatorcontrib><creatorcontrib>BELTON, Alexander C. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ATTAL, Stéphane</au><au>BELTON, Alexander C. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The chaotic-representation property for a class of normal martingales</atitle><jtitle>Probability theory and related fields</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>139</volume><issue>3-4</issue><spage>543</spage><epage>562</epage><pages>543-562</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>Suppose Z=(Zt)t&gt;/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaotic-representation property and is strongly Markovian (in an appropriate sense). If also beta is bounded away from the endpoints 0 and 2 on every compact subinterval of [0,infinity] then Z is shown to have locally bounded trajectories, a variation on a result of Russo and Vallois.</abstract><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00440-006-0052-z</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2007-11, Vol.139 (3-4), p.543-562
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661271994
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algebra
Applied mathematics
Control theory
Exact sciences and technology
General topics
Inference from stochastic processes
time series analysis
Martingales
Mathematical functions
Mathematical models
Mathematics
Probability
Probability and statistics
Probability theory and stochastic processes
Representations
Sciences and techniques of general use
Statistics
Stochastic processes
Studies
title The chaotic-representation property for a class of normal martingales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20chaotic-representation%20property%20for%20a%20class%20of%20normal%20martingales&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=ATTAL,%20St%C3%A9phane&rft.date=2007-11-01&rft.volume=139&rft.issue=3-4&rft.spage=543&rft.epage=562&rft.pages=543-562&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-006-0052-z&rft_dat=%3Cproquest_cross%3E2661271994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233258088&rft_id=info:pmid/&rfr_iscdi=true