The chaotic-representation property for a class of normal martingales

Suppose Z=(Zt)t>/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2007-11, Vol.139 (3-4), p.543-562
Hauptverfasser: ATTAL, Stéphane, BELTON, Alexander C. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose Z=(Zt)t>/=0 is a normal martingale which satisfies the structure equation ... . By adapting and extending techniques due to Parthasarathy and to Kurtz, it is shown that, if a is locally bounded and beta has values in the interval [-2,0], the process Z is unique in law, possesses the chaotic-representation property and is strongly Markovian (in an appropriate sense). If also beta is bounded away from the endpoints 0 and 2 on every compact subinterval of [0,infinity] then Z is shown to have locally bounded trajectories, a variation on a result of Russo and Vallois.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-006-0052-z