Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2008-05, Vol.141 (1-2), p.181-212
Hauptverfasser: Járai, Antal A., Redig, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 1-2
container_start_page 181
container_title Probability theory and related fields
container_volume 141
creator Járai, Antal A.
Redig, Frank
description We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on .
doi_str_mv 10.1007/s00440-007-0083-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2661271968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1427730771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-396344b6e3e4b578727ab510998b41467ca9c081bc700fbbb240def4fea0fc1f3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHYWiGVg_BMnWVYVPxWV2MA6sh0bXCVOsVMkjsAt2HARjsJJSJQKVl2MZqT53pvRQ-iUwCUByK4iAOeQ9GNfOUtgD00IZzShIPg-mgDJ8iSHlByioxhXAEAZpxN0v_DWedcZ_NbWm8bg2jWuw63F3YvBM2VqJz2O0ldrVxvctJWpsfO4co3x0bU-4gr_fHx9f2J2jA6srKM52fYperq5fpzfJcuH28V8tkw0J6JLWCEY50oYZrhKszyjmVQpgaLIFSdcZFoWGnKidAZglVKUQ2Ust0aC1cSyKToffdehfd2Y2JWrdhN8f7KkQhCakULkPXW2k2KMpgUw6CEyQjq0MQZjy3VwjQzvJYFyCLYcgy2HcQi2HDQXW2MZtaxtkF67-CekACkTBe85OnKxX_lnE_4f2G3-C_TRhwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>233259030</pqid></control><display><type>article</type><title>Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Járai, Antal A. ; Redig, Frank</creator><creatorcontrib>Járai, Antal A. ; Redig, Frank</creatorcontrib><description>We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on .</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-007-0083-0</identifier><identifier>CODEN: PTRFEU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Avalanches ; Economics ; Exact sciences and technology ; Finance ; General topics ; Graph theory ; Inference from stochastic processes; time series analysis ; Insurance ; Management ; Markov analysis ; Markov processes ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Probability ; Probability and statistics ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Random walk theory ; Sciences and techniques of general use ; Statistics ; Statistics for Business ; Stochastic processes ; Studies ; Theoretical</subject><ispartof>Probability theory and related fields, 2008-05, Vol.141 (1-2), p.181-212</ispartof><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008</rights><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-396344b6e3e4b578727ab510998b41467ca9c081bc700fbbb240def4fea0fc1f3</citedby><cites>FETCH-LOGICAL-c416t-396344b6e3e4b578727ab510998b41467ca9c081bc700fbbb240def4fea0fc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-007-0083-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-007-0083-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20053694$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Járai, Antal A.</creatorcontrib><creatorcontrib>Redig, Frank</creatorcontrib><title>Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on .</description><subject>Avalanches</subject><subject>Economics</subject><subject>Exact sciences and technology</subject><subject>Finance</subject><subject>General topics</subject><subject>Graph theory</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Random walk theory</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1OwzAQhS0EEqVwAHYWiGVg_BMnWVYVPxWV2MA6sh0bXCVOsVMkjsAt2HARjsJJSJQKVl2MZqT53pvRQ-iUwCUByK4iAOeQ9GNfOUtgD00IZzShIPg-mgDJ8iSHlByioxhXAEAZpxN0v_DWedcZ_NbWm8bg2jWuw63F3YvBM2VqJz2O0ldrVxvctJWpsfO4co3x0bU-4gr_fHx9f2J2jA6srKM52fYperq5fpzfJcuH28V8tkw0J6JLWCEY50oYZrhKszyjmVQpgaLIFSdcZFoWGnKidAZglVKUQ2Ust0aC1cSyKToffdehfd2Y2JWrdhN8f7KkQhCakULkPXW2k2KMpgUw6CEyQjq0MQZjy3VwjQzvJYFyCLYcgy2HcQi2HDQXW2MZtaxtkF67-CekACkTBe85OnKxX_lnE_4f2G3-C_TRhwQ</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Járai, Antal A.</creator><creator>Redig, Frank</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080501</creationdate><title>Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3</title><author>Járai, Antal A. ; Redig, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-396344b6e3e4b578727ab510998b41467ca9c081bc700fbbb240def4fea0fc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Avalanches</topic><topic>Economics</topic><topic>Exact sciences and technology</topic><topic>Finance</topic><topic>General topics</topic><topic>Graph theory</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Random walk theory</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Járai, Antal A.</creatorcontrib><creatorcontrib>Redig, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Járai, Antal A.</au><au>Redig, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2008-05-01</date><risdate>2008</risdate><volume>141</volume><issue>1-2</issue><spage>181</spage><epage>212</epage><pages>181-212</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><coden>PTRFEU</coden><abstract>We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00440-007-0083-0</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2008-05, Vol.141 (1-2), p.181-212
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2661271968
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Avalanches
Economics
Exact sciences and technology
Finance
General topics
Graph theory
Inference from stochastic processes
time series analysis
Insurance
Management
Markov analysis
Markov processes
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Probability
Probability and statistics
Probability Theory and Stochastic Processes
Quantitative Finance
Random walk theory
Sciences and techniques of general use
Statistics
Statistics for Business
Stochastic processes
Studies
Theoretical
title Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infinite%20volume%20limit%20of%20the%20Abelian%20sandpile%20model%20in%20dimensions%20d%20%E2%89%A5%C2%A0%203&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=J%C3%A1rai,%20Antal%20A.&rft.date=2008-05-01&rft.volume=141&rft.issue=1-2&rft.spage=181&rft.epage=212&rft.pages=181-212&rft.issn=0178-8051&rft.eissn=1432-2064&rft.coden=PTRFEU&rft_id=info:doi/10.1007/s00440-007-0083-0&rft_dat=%3Cproquest_cross%3E1427730771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=233259030&rft_id=info:pmid/&rfr_iscdi=true