Infinite volume limit of the Abelian sandpile model in dimensions d ≥  3

We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2008-05, Vol.141 (1-2), p.181-212
Hauptverfasser: Járai, Antal A., Redig, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Abelian sandpile model on . In d ≥  3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit  μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure  μ , and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on .
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-007-0083-0