Infinite volume limit of the Abelian sandpile model in dimensions d ≥ 3
We study the Abelian sandpile model on . In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ , and...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2008-05, Vol.141 (1-2), p.181-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Abelian sandpile model on
. In
d
≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit
μ
of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure
μ
, and study ergodic properties of this process. The main techniques we use are a connection between the statistics of waves and uniform two-component spanning trees and results on the uniform spanning forest measure on
. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-007-0083-0 |