Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise : Stratonovitch's case

In this article we prove new results concerning the long-time behavior of random fields that are solutions in some sense to a class of semilinear parabolic equations subjected to a homogeneous and multiplicative white noise. Our main results state that these random fields eventually homogeneize with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 1998-10, Vol.112 (2), p.149-202
Hauptverfasser: CHUESHOV, I. D, VUILLERMOT, P. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we prove new results concerning the long-time behavior of random fields that are solutions in some sense to a class of semilinear parabolic equations subjected to a homogeneous and multiplicative white noise. Our main results state that these random fields eventually homogeneize with respect to the spatial variable and finally converge to a non-random global attractor which consists of two spatially and temporally homogeneous asymptotic states. More precisely, we prove that the random fields either stabilize exponentially rapidly with probability one around one of the asymptotic states, or that they set out to oscillate between them. In the first case we can also determine exactly the corresponding Lyapunov exponents. In the second case we prove that the random fields are in fact recurrent in that they can reach every point between the two asymptotic states in a finite time with probability one. In both cases we also interpret our results in terms of stability properties of the global attractor and we provide estimates for the average time that the random fields spend in small neighborhoods of the asymptotic states. Our methods of proof rest upon the use of a suitable regularization of the Brownian motion along with a related Wong-Zakaï approximation procedure.
ISSN:0178-8051
1432-2064
DOI:10.1007/s004400050186