Scaling identity for crossing Brownian motion in a Poissonian potential
We consider d-dimensional Brownian motion in a truncated Poissonian potential (d≥ 2). If Brownian motion starts at the origin and ends in the closed ball with center y and radius 1, then the transverse fluctuation of the path is expected to be of order |y|ξ, whereas the distance fluctuation is of or...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 1998-11, Vol.112 (3), p.299-319 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider d-dimensional Brownian motion in a truncated Poissonian potential (d≥ 2). If Brownian motion starts at the origin and ends in the closed ball with center y and radius 1, then the transverse fluctuation of the path is expected to be of order |y|ξ, whereas the distance fluctuation is of order |y|χ. Physics literature tells us that ξ and χ should satisfy a scaling identity 2ξ− 1 = χ. We give here rigorous results for this conjecture. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s004400050192 |