Optimized Synthesis of Xanthan gum/ZnO/TiO2Nanocomposite with High Antifungal Activity against Pathogenic Candida albicans

Increased resistance of fungal pathogens to common antimicrobial agents is known as one of the most important human problems. Due to the limited variety of antifungal drugs available, the identification and use of new antifungal drugs are essential. This study aimed to determine the optimal conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2022-01, Vol.2022
Hauptverfasser: Ghorbani, Fatemeh, Gorji, Pourya, Mobarakeh, Mohammad Salmani, Mozaffari, Hamid Reza, Masaeli, Reza, Safaei, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased resistance of fungal pathogens to common antimicrobial agents is known as one of the most important human problems. Due to the limited variety of antifungal drugs available, the identification and use of new antifungal drugs are essential. This study aimed to determine the optimal conditions for synthesizing a novel nanocomposite of xanthan gum/ZnO/TiO2with the highest antifungal activity against Candida albicans (C. albicans). For this purpose, nine experiments were designed using the Taguchi method. In the designed experiments, three factors of xanthan gum, ZnO, and TiO2nanoparticles have been investigated at three different levels, and the best ratio with the highest antifungal activity was determined. The results showed that in the presence of the synthesized nanocomposite in experiment 3 (xanthan gum 0.01 M, ZnO 0.09 M, and TiO2 0.09 M), the inhibition of fungal growth reached 92.51%. The properties of the synthesized nanocomposite and its components were investigated using different characterization methods, which confirmed the formation of nanocomposites with desirable properties. The antifungal activity results showed that the synthesized nanocomposite as an antifungal agent has an effective performance and can be used well in various fields.
ISSN:1687-4110
1687-4129
DOI:10.1155/2022/7255181