An ant colony optimization approach for the proportionate multiprocessor open shop
Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limit...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022-05, Vol.43 (4), p.785-817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 817 |
---|---|
container_issue | 4 |
container_start_page | 785 |
container_title | Journal of combinatorial optimization |
container_volume | 43 |
creator | Adak, Zeynep Arıoğlu, Mahmure Övül Bulkan, Serol |
description | Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time. |
doi_str_mv | 10.1007/s10878-021-00798-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660637195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660637195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29799d06ac280d92c960b10d82f07ce1fd57fdd7155e5b5afda7bf61a0a6db803</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueo5Os-TqW4hcUBNFzSPNht7SbNUkP6683uoI3T_PezHszw0PoksA1ARA3mYAUEgMluFIl8XiEZoSJFlMp-XHFraSYK2Cn6CznLQBUfDtDL4u-MX1pbNzFfmziULp992lKF2t_GFI0dtOEmJqy8U2lQ0zfM1N8sz_sSldb1udcBXHwfZM3cThHJ8Hssr_4rXP0dn_3unzEq-eHp-VihW1LVMFUCaUccGOpBKeoVRzWBJykAYT1JDgmgnOCMObZmpngjFgHTgwY7tYS2jm6mvbWHz4OPhe9jYfU15Oacg68FUSxqqKTyqaYc_JBD6nbmzRqAvo7Oz1lp2t2-ic7PVZTO5lyFffvPv2t_sf1BSuEdEk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660637195</pqid></control><display><type>article</type><title>An ant colony optimization approach for the proportionate multiprocessor open shop</title><source>SpringerLink Journals - AutoHoldings</source><creator>Adak, Zeynep ; Arıoğlu, Mahmure Övül ; Bulkan, Serol</creator><creatorcontrib>Adak, Zeynep ; Arıoğlu, Mahmure Övül ; Bulkan, Serol</creatorcontrib><description>Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-021-00798-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Ant colony optimization ; Combinatorics ; Computing time ; Convex and Discrete Geometry ; Job shops ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Multiprocessing ; Operations Research/Decision Theory ; Optimization ; Optimization models ; Representations ; Searching ; Solution space ; Task scheduling ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2022-05, Vol.43 (4), p.785-817</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29799d06ac280d92c960b10d82f07ce1fd57fdd7155e5b5afda7bf61a0a6db803</citedby><cites>FETCH-LOGICAL-c319t-29799d06ac280d92c960b10d82f07ce1fd57fdd7155e5b5afda7bf61a0a6db803</cites><orcidid>0000-0002-4815-4389 ; 0000-0002-5782-5770 ; 0000-0001-7654-0773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-021-00798-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-021-00798-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Adak, Zeynep</creatorcontrib><creatorcontrib>Arıoğlu, Mahmure Övül</creatorcontrib><creatorcontrib>Bulkan, Serol</creatorcontrib><title>An ant colony optimization approach for the proportionate multiprocessor open shop</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Combinatorics</subject><subject>Computing time</subject><subject>Convex and Discrete Geometry</subject><subject>Job shops</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiprocessing</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Representations</subject><subject>Searching</subject><subject>Solution space</subject><subject>Task scheduling</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BTwueo5Os-TqW4hcUBNFzSPNht7SbNUkP6683uoI3T_PezHszw0PoksA1ARA3mYAUEgMluFIl8XiEZoSJFlMp-XHFraSYK2Cn6CznLQBUfDtDL4u-MX1pbNzFfmziULp992lKF2t_GFI0dtOEmJqy8U2lQ0zfM1N8sz_sSldb1udcBXHwfZM3cThHJ8Hssr_4rXP0dn_3unzEq-eHp-VihW1LVMFUCaUccGOpBKeoVRzWBJykAYT1JDgmgnOCMObZmpngjFgHTgwY7tYS2jm6mvbWHz4OPhe9jYfU15Oacg68FUSxqqKTyqaYc_JBD6nbmzRqAvo7Oz1lp2t2-ic7PVZTO5lyFffvPv2t_sf1BSuEdEk</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Adak, Zeynep</creator><creator>Arıoğlu, Mahmure Övül</creator><creator>Bulkan, Serol</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4815-4389</orcidid><orcidid>https://orcid.org/0000-0002-5782-5770</orcidid><orcidid>https://orcid.org/0000-0001-7654-0773</orcidid></search><sort><creationdate>20220501</creationdate><title>An ant colony optimization approach for the proportionate multiprocessor open shop</title><author>Adak, Zeynep ; Arıoğlu, Mahmure Övül ; Bulkan, Serol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29799d06ac280d92c960b10d82f07ce1fd57fdd7155e5b5afda7bf61a0a6db803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Combinatorics</topic><topic>Computing time</topic><topic>Convex and Discrete Geometry</topic><topic>Job shops</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiprocessing</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Representations</topic><topic>Searching</topic><topic>Solution space</topic><topic>Task scheduling</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adak, Zeynep</creatorcontrib><creatorcontrib>Arıoğlu, Mahmure Övül</creatorcontrib><creatorcontrib>Bulkan, Serol</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adak, Zeynep</au><au>Arıoğlu, Mahmure Övül</au><au>Bulkan, Serol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ant colony optimization approach for the proportionate multiprocessor open shop</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>43</volume><issue>4</issue><spage>785</spage><epage>817</epage><pages>785-817</pages><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-021-00798-y</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-4815-4389</orcidid><orcidid>https://orcid.org/0000-0002-5782-5770</orcidid><orcidid>https://orcid.org/0000-0001-7654-0773</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-6905 |
ispartof | Journal of combinatorial optimization, 2022-05, Vol.43 (4), p.785-817 |
issn | 1382-6905 1573-2886 |
language | eng |
recordid | cdi_proquest_journals_2660637195 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Ant colony optimization Combinatorics Computing time Convex and Discrete Geometry Job shops Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Multiprocessing Operations Research/Decision Theory Optimization Optimization models Representations Searching Solution space Task scheduling Theory of Computation |
title | An ant colony optimization approach for the proportionate multiprocessor open shop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ant%20colony%20optimization%20approach%20for%20the%20proportionate%20multiprocessor%20open%20shop&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Adak,%20Zeynep&rft.date=2022-05-01&rft.volume=43&rft.issue=4&rft.spage=785&rft.epage=817&rft.pages=785-817&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-021-00798-y&rft_dat=%3Cproquest_cross%3E2660637195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660637195&rft_id=info:pmid/&rfr_iscdi=true |