An ant colony optimization approach for the proportionate multiprocessor open shop
Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limit...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2022-05, Vol.43 (4), p.785-817 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multiprocessor open shop makes a generalization to classical open shop by allowing parallel machines for the same task. Scheduling of this shop environment to minimize the makespan is a strongly NP-Hard problem. Despite its wide application areas in industry, the research in the field is still limited. In this paper, the proportionate case is considered where a task requires a fixed processing time independent of the job identity. A novel highly efficient solution representation is developed for the problem. An ant colony optimization model based on this representation is proposed with makespan minimization objective. It carries out a random exploration of the solution space and allows to search for good solution characteristics in a less time-consuming way. The algorithm performs full exploitation of search knowledge, and it successfully incorporates problem knowledge. To increase solution quality, a local exploration approach analogous to a local search, is further employed on the solution constructed. The proposed algorithm is tested over 100 benchmark instances from the literature. It outperforms the current state-of-the-art algorithm both in terms of solution quality and computational time. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-021-00798-y |