On the geometric P=W conjecture

We formulate the geometric P=W conjecture for singular character varieties. We establish it for compact Riemann surfaces of genus one, and obtain partial results in arbitrary genus. To this end, we employ non-Archimedean, birational and degeneration techniques to study the topology of the dual bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2022-07, Vol.28 (3), Article 65
Hauptverfasser: Mauri, Mirko, Mazzon, Enrica, Stevenson, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate the geometric P=W conjecture for singular character varieties. We establish it for compact Riemann surfaces of genus one, and obtain partial results in arbitrary genus. To this end, we employ non-Archimedean, birational and degeneration techniques to study the topology of the dual boundary complex of character varieties. We also clarify the relation between the geometric and the cohomological P=W conjectures.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-022-00776-0