On the geometric P=W conjecture
We formulate the geometric P=W conjecture for singular character varieties. We establish it for compact Riemann surfaces of genus one, and obtain partial results in arbitrary genus. To this end, we employ non-Archimedean, birational and degeneration techniques to study the topology of the dual bound...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2022-07, Vol.28 (3), Article 65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We formulate the geometric P=W conjecture for singular character varieties. We establish it for compact Riemann surfaces of genus one, and obtain partial results in arbitrary genus. To this end, we employ non-Archimedean, birational and degeneration techniques to study the topology of the dual boundary complex of character varieties. We also clarify the relation between the geometric and the cohomological P=W conjectures. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-022-00776-0 |