Internal model control for rocket launcher position servo system based on improved wavelet neural network
This paper proposes an improved wavelet neural network-internal model controller (WNN-IMC) for the rocket launcher position servo system. Due to complex nonlinearities and uncertainties of external disturbances in the rocket launcher position servo system, it is vitally challenging to establish its...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-05, Vol.236 (9), p.4487-4502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an improved wavelet neural network-internal model controller (WNN-IMC) for the rocket launcher position servo system. Due to complex nonlinearities and uncertainties of external disturbances in the rocket launcher position servo system, it is vitally challenging to establish its accurate model by the mechanical modeling technique. A wavelet neural network (WNN) identification method is proposed to determine the system mathematical model through test datum, which optimized by the hybrid algorithm of differential evolution (DE) and particle swarm optimization (PSO). Then, the proposed method is applied to identify the semi-physical simulation platform of the rocket launcher velocity servo system. The results demonstrate that the validity of the DEPSO-WNN method is better than that of the WNN and PSO-WNN methods. Finally, compared with the WNN-IMC controller and the ADRC controller, the effectiveness of the improved WNN-IMC controller is verified by the semi-physical simulation experiments. |
---|---|
ISSN: | 0954-4062 2041-2983 |
DOI: | 10.1177/09544062211053169 |