Sufficiency for nephroid starlikeness using hypergeometric functions
Let A consists of analytic functions f:D→C satisfying f(0)=f′(0)−1=0. Let SNe∗ be the recently introduced Ma–Minda type functions family associated with the two‐cusped kidney‐shaped nephroid curve (u−1)2+v2−493−4v23=0 given by SNe∗:=f∈A:zf′(z)f(z)≺φNe(z)=1+z−z3/3. In this paper, we adopt a novel tec...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-06, Vol.45 (9), p.5388-5401 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A consists of analytic functions
f:D→C satisfying
f(0)=f′(0)−1=0. Let
SNe∗ be the recently introduced Ma–Minda type functions family associated with the two‐cusped kidney‐shaped nephroid curve
(u−1)2+v2−493−4v23=0 given by
SNe∗:=f∈A:zf′(z)f(z)≺φNe(z)=1+z−z3/3.
In this paper, we adopt a novel technique that uses the geometric properties of hypergeometric functions to determine sharp estimates on β so that each of the differential subordinations
p(z)+βzp′(z)≺1+z;1+z;ez;
imply p (z) ≺ φNe(z), where p (z) is analytic satisfying
p(0)=1. As applications, we establish conditions that are sufficient to deduce that
f∈A is a member of
SNe∗. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.8113 |