Sodium-ion battery from sea salt: a review
The electrical energy storage is important right now, because it is influenced by increasing human energy needs, and the battery is a storage energy that is being developed simultaneously. Furthermore, it is planned to switch the lithium-ion batteries with the sodium-ion batteries and the abundance...
Gespeichert in:
Veröffentlicht in: | Materials for Renewable and Sustainable Energy 2022-04, Vol.11 (1), p.71-89 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrical energy storage is important right now, because it is influenced by increasing human energy needs, and the battery is a storage energy that is being developed simultaneously. Furthermore, it is planned to switch the lithium-ion batteries with the sodium-ion batteries and the abundance of the sodium element and its economical price compared to lithium is the main point. The main components anode and cathode have significant effect on the sodium battery performance. This review briefly describes the components of the sodium battery, including the anode, cathode, electrolyte, binder, and separator, and the sources of sodium raw material is the most important in material synthesis or installation. Sea salt or NaCl has potential ability as a raw material for sodium battery cathodes, and the usage of sea salt in the cathode synthesis process reduces production costs, because the salt is very abundant and environmentally friendly as well. When a cathode using a source of Na
2
CO
3
, which was synthesized independently from NaCl can save about 16.66% after being calculated and anode with sodium metal when synthesized independently with NaCl can save about 98% after being calculated, because sodium metal is classified as expensive matter. |
---|---|
ISSN: | 2194-1459 2194-1467 |
DOI: | 10.1007/s40243-022-00208-1 |