The Statistics of Superdirective Beam Patterns
Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systemati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2022, Vol.70, p.1959-1975 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1975 |
---|---|
container_issue | |
container_start_page | 1959 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Trucco, Andrea |
description | Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning. |
doi_str_mv | 10.1109/TSP.2022.3156700 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659348853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729538</ieee_id><sourcerecordid>2659348853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC513zNZvkqMUvKFhoBW8hm53gFtutSVbw37ulRebwzuF5Z-Ah5JrRijFq7lbLRcUp55VgUCtKT8iEGclKKlV9Ou4URAlafZyTi5TWlDIpTT0h1eoTi2V2uUu586noQ7EcdhjbLqLP3Q8WD-g2xcLljHGbLslZcF8Jr445Je9Pj6vZSzl_e36d3c9Lz6WmJQSmdAheCBOMAtQBhXSBc8GDVq12raemAQYAehwHjYCat8Frjh50I6bk9nB3F_vvAVO2636I2_Gl5TUYIbUGMVL0QPnYpxQx2F3sNi7-Wkbt3oodrdi9FXu0MlZuDpUOEf9xo7gBocUfqIlcXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659348853</pqid></control><display><type>article</type><title>The Statistics of Superdirective Beam Patterns</title><source>IEEE Electronic Library (IEL)</source><creator>Trucco, Andrea</creator><creatorcontrib>Trucco, Andrea</creatorcontrib><description>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3156700</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Array signal processing ; Arrays ; beam pattern statistics ; Beamforming ; correlation ; Design optimization ; Empirical equations ; Lobes ; Mathematical analysis ; Mathematical models ; Optimization ; Probability ; Probability density function ; Probability density functions ; quantile functions ; Random errors ; Rician channels ; Rician PDF ; robust superdirectivity ; Robustness ; Robustness (mathematics) ; Statistical analysis ; superdirective arrays</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.1959-1975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</citedby><cites>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</cites><orcidid>0000-0003-1189-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729538$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Trucco, Andrea</creatorcontrib><title>The Statistics of Superdirective Beam Patterns</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</description><subject>Array signal processing</subject><subject>Arrays</subject><subject>beam pattern statistics</subject><subject>Beamforming</subject><subject>correlation</subject><subject>Design optimization</subject><subject>Empirical equations</subject><subject>Lobes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>quantile functions</subject><subject>Random errors</subject><subject>Rician channels</subject><subject>Rician PDF</subject><subject>robust superdirectivity</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>superdirective arrays</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC513zNZvkqMUvKFhoBW8hm53gFtutSVbw37ulRebwzuF5Z-Ah5JrRijFq7lbLRcUp55VgUCtKT8iEGclKKlV9Ou4URAlafZyTi5TWlDIpTT0h1eoTi2V2uUu586noQ7EcdhjbLqLP3Q8WD-g2xcLljHGbLslZcF8Jr445Je9Pj6vZSzl_e36d3c9Lz6WmJQSmdAheCBOMAtQBhXSBc8GDVq12raemAQYAehwHjYCat8Frjh50I6bk9nB3F_vvAVO2636I2_Gl5TUYIbUGMVL0QPnYpxQx2F3sNi7-Wkbt3oodrdi9FXu0MlZuDpUOEf9xo7gBocUfqIlcXQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Trucco, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid></search><sort><creationdate>2022</creationdate><title>The Statistics of Superdirective Beam Patterns</title><author>Trucco, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Array signal processing</topic><topic>Arrays</topic><topic>beam pattern statistics</topic><topic>Beamforming</topic><topic>correlation</topic><topic>Design optimization</topic><topic>Empirical equations</topic><topic>Lobes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>quantile functions</topic><topic>Random errors</topic><topic>Rician channels</topic><topic>Rician PDF</topic><topic>robust superdirectivity</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>superdirective arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trucco, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trucco, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Statistics of Superdirective Beam Patterns</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>1959</spage><epage>1975</epage><pages>1959-1975</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2022.3156700</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022, Vol.70, p.1959-1975 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2659348853 |
source | IEEE Electronic Library (IEL) |
subjects | Array signal processing Arrays beam pattern statistics Beamforming correlation Design optimization Empirical equations Lobes Mathematical analysis Mathematical models Optimization Probability Probability density function Probability density functions quantile functions Random errors Rician channels Rician PDF robust superdirectivity Robustness Robustness (mathematics) Statistical analysis superdirective arrays |
title | The Statistics of Superdirective Beam Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Statistics%20of%20Superdirective%20Beam%20Patterns&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Trucco,%20Andrea&rft.date=2022&rft.volume=70&rft.spage=1959&rft.epage=1975&rft.pages=1959-1975&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2022.3156700&rft_dat=%3Cproquest_ieee_%3E2659348853%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659348853&rft_id=info:pmid/&rft_ieee_id=9729538&rfr_iscdi=true |