The Statistics of Superdirective Beam Patterns

Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2022, Vol.70, p.1959-1975
1. Verfasser: Trucco, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1975
container_issue
container_start_page 1959
container_title IEEE transactions on signal processing
container_volume 70
creator Trucco, Andrea
description Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.
doi_str_mv 10.1109/TSP.2022.3156700
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659348853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9729538</ieee_id><sourcerecordid>2659348853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC513zNZvkqMUvKFhoBW8hm53gFtutSVbw37ulRebwzuF5Z-Ah5JrRijFq7lbLRcUp55VgUCtKT8iEGclKKlV9Ou4URAlafZyTi5TWlDIpTT0h1eoTi2V2uUu586noQ7EcdhjbLqLP3Q8WD-g2xcLljHGbLslZcF8Jr445Je9Pj6vZSzl_e36d3c9Lz6WmJQSmdAheCBOMAtQBhXSBc8GDVq12raemAQYAehwHjYCat8Frjh50I6bk9nB3F_vvAVO2636I2_Gl5TUYIbUGMVL0QPnYpxQx2F3sNi7-Wkbt3oodrdi9FXu0MlZuDpUOEf9xo7gBocUfqIlcXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659348853</pqid></control><display><type>article</type><title>The Statistics of Superdirective Beam Patterns</title><source>IEEE Electronic Library (IEL)</source><creator>Trucco, Andrea</creator><creatorcontrib>Trucco, Andrea</creatorcontrib><description>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3156700</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Array signal processing ; Arrays ; beam pattern statistics ; Beamforming ; correlation ; Design optimization ; Empirical equations ; Lobes ; Mathematical analysis ; Mathematical models ; Optimization ; Probability ; Probability density function ; Probability density functions ; quantile functions ; Random errors ; Rician channels ; Rician PDF ; robust superdirectivity ; Robustness ; Robustness (mathematics) ; Statistical analysis ; superdirective arrays</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.1959-1975</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</citedby><cites>FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</cites><orcidid>0000-0003-1189-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9729538$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Trucco, Andrea</creatorcontrib><title>The Statistics of Superdirective Beam Patterns</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</description><subject>Array signal processing</subject><subject>Arrays</subject><subject>beam pattern statistics</subject><subject>Beamforming</subject><subject>correlation</subject><subject>Design optimization</subject><subject>Empirical equations</subject><subject>Lobes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Probability</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>quantile functions</subject><subject>Random errors</subject><subject>Rician channels</subject><subject>Rician PDF</subject><subject>robust superdirectivity</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>superdirective arrays</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC513zNZvkqMUvKFhoBW8hm53gFtutSVbw37ulRebwzuF5Z-Ah5JrRijFq7lbLRcUp55VgUCtKT8iEGclKKlV9Ou4URAlafZyTi5TWlDIpTT0h1eoTi2V2uUu586noQ7EcdhjbLqLP3Q8WD-g2xcLljHGbLslZcF8Jr445Je9Pj6vZSzl_e36d3c9Lz6WmJQSmdAheCBOMAtQBhXSBc8GDVq12raemAQYAehwHjYCat8Frjh50I6bk9nB3F_vvAVO2636I2_Gl5TUYIbUGMVL0QPnYpxQx2F3sNi7-Wkbt3oodrdi9FXu0MlZuDpUOEf9xo7gBocUfqIlcXQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Trucco, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid></search><sort><creationdate>2022</creationdate><title>The Statistics of Superdirective Beam Patterns</title><author>Trucco, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2480-5f178ffc339f975e8fe34af2232f87d8adc09b515558585a5b3562dfc82ec58b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Array signal processing</topic><topic>Arrays</topic><topic>beam pattern statistics</topic><topic>Beamforming</topic><topic>correlation</topic><topic>Design optimization</topic><topic>Empirical equations</topic><topic>Lobes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Probability</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>quantile functions</topic><topic>Random errors</topic><topic>Rician channels</topic><topic>Rician PDF</topic><topic>robust superdirectivity</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>superdirective arrays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trucco, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trucco, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Statistics of Superdirective Beam Patterns</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>1959</spage><epage>1975</epage><pages>1959-1975</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2022.3156700</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2022, Vol.70, p.1959-1975
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2659348853
source IEEE Electronic Library (IEL)
subjects Array signal processing
Arrays
beam pattern statistics
Beamforming
correlation
Design optimization
Empirical equations
Lobes
Mathematical analysis
Mathematical models
Optimization
Probability
Probability density function
Probability density functions
quantile functions
Random errors
Rician channels
Rician PDF
robust superdirectivity
Robustness
Robustness (mathematics)
Statistical analysis
superdirective arrays
title The Statistics of Superdirective Beam Patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Statistics%20of%20Superdirective%20Beam%20Patterns&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Trucco,%20Andrea&rft.date=2022&rft.volume=70&rft.spage=1959&rft.epage=1975&rft.pages=1959-1975&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2022.3156700&rft_dat=%3Cproquest_ieee_%3E2659348853%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659348853&rft_id=info:pmid/&rft_ieee_id=9729538&rfr_iscdi=true