The Statistics of Superdirective Beam Patterns

Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2022, Vol.70, p.1959-1975
1. Verfasser: Trucco, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2022.3156700