Some applications of the Hermite–Hadamard inequality for log‐convex functions in quantum divergences

One of the beautiful and very simple inequalities for a convex function is the Hermite–Hadamard inequality. The concept of log‐convexity is a strong variant of convexity. In this paper, by the Hermite–Hadamard inequality, we introduce two‐parametric Tsallis quantum relative entropy, two‐parametric T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-05, Vol.45 (8), p.4899-4906
Hauptverfasser: Hassanzad, Fatemeh, Mehri‐Dehnavi, Hossien, Agahi, Hamzeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the beautiful and very simple inequalities for a convex function is the Hermite–Hadamard inequality. The concept of log‐convexity is a strong variant of convexity. In this paper, by the Hermite–Hadamard inequality, we introduce two‐parametric Tsallis quantum relative entropy, two‐parametric Tsallis–Lin quantum relative entropy, and two‐parametric quantum Jensen–Shannon divergence in quantum information theory. Then some properties of quantum Tsallis–Jensen–Shannon divergence for two density matrices are investigated by this inequality.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.8164