Convergence of Ricci-limit spaces under bounded Ricci curvature and local covering geometry I
We extend Cheeger-Gromov's and Anderson's convergence theorems to regular limit spaces of manifolds with bounded Ricci curvature and local covering geometry, by establishing the \(C^{1,\alpha}\)-regularities that are the best one may expect on those Ricci-limit spaces. As an application we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend Cheeger-Gromov's and Anderson's convergence theorems to regular limit spaces of manifolds with bounded Ricci curvature and local covering geometry, by establishing the \(C^{1,\alpha}\)-regularities that are the best one may expect on those Ricci-limit spaces. As an application we prove an optimal generalization of Fukaya's fibration theorem on collapsed manifolds with bounded Ricci curvature, which also improves the original version to \(C^{1,\alpha}\) limit spaces. |
---|---|
ISSN: | 2331-8422 |