Convergence of Ricci-limit spaces under bounded Ricci curvature and local covering geometry I

We extend Cheeger-Gromov's and Anderson's convergence theorems to regular limit spaces of manifolds with bounded Ricci curvature and local covering geometry, by establishing the \(C^{1,\alpha}\)-regularities that are the best one may expect on those Ricci-limit spaces. As an application we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Jiang, Zuohai, Kong, Lingling, Xu, Shicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend Cheeger-Gromov's and Anderson's convergence theorems to regular limit spaces of manifolds with bounded Ricci curvature and local covering geometry, by establishing the \(C^{1,\alpha}\)-regularities that are the best one may expect on those Ricci-limit spaces. As an application we prove an optimal generalization of Fukaya's fibration theorem on collapsed manifolds with bounded Ricci curvature, which also improves the original version to \(C^{1,\alpha}\) limit spaces.
ISSN:2331-8422