Ultrafast exciton transport at early times in quantum dot solids

Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtoseco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2022-05, Vol.21 (5), p.533-539
Hauptverfasser: Zhang, Zhilong, Sung, Jooyoung, Toolan, Daniel T. W., Han, Sanyang, Pandya, Raj, Weir, Michael P., Xiao, James, Dowland, Simon, Liu, Mengxia, Ryan, Anthony J., Jones, Richard A. L., Huang, Shujuan, Rao, Akshay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~10 2  cm 2  s –1 ) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10 –1 –1 cm 2  s –1 ). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids. Understanding exciton dynamics in quantum dots is important for realizing their potential in optoelectronics. Here, the authors use femtosecond transient absorption microscopy to reveal ultrafast exciton transport, enhanced at larger interdot distance and taking place within hundreds of femtoseconds after generation.
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-022-01204-6