Asymptotic Properties of Generalized Eigenfunctions for Multi-dimensional Quantum Walks

We construct a distorted Fourier transformation associated with the multi-dimensional quantum walk. In order to avoid the complication of notations, almost all of our arguments are restricted to two-dimensional quantum walks (2DQWs) without loss of generality. The distorted Fourier transformation ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2022-05, Vol.23 (5), p.1693-1724
Hauptverfasser: Komatsu, Takashi, Konno, Norio, Morioka, Hisashi, Segawa, Etsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a distorted Fourier transformation associated with the multi-dimensional quantum walk. In order to avoid the complication of notations, almost all of our arguments are restricted to two-dimensional quantum walks (2DQWs) without loss of generality. The distorted Fourier transformation characterizes generalized eigenfunctions of the time evolution operator of the QW. The 2DQW which will be considered in this paper has an anisotropy due to the definition of the shift operator for the free QW. Then, we define an anisotropic Banach space as a modified Agmon-Hörmander’s B ∗ space, and we derive the asymptotic behavior at infinity of generalized eigenfunctions in these spaces. The scattering matrix appears in the asymptotic expansion of generalized eigenfunctions.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-021-01131-3