Singular Quasilinear Schrödinger Equations with Exponential Growth in Dimension Two

In this work, we study the existence of positive solution for the following class of singular quasilinear Schrödinger equations: - div ( g 2 ( u ) ∇ u ) + g ( u ) g ′ ( u ) | ∇ u | 2 + V ( x ) u = f ( u ) | x | a in R 2 , where a ∈ ( 0 , 2 ) , g : R → R + is a continuously differentiable function, V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022-06, Vol.19 (3), Article 120
Hauptverfasser: Severo, Uberlandio B., de Souza, Manassés, de S. Germano, Diogo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study the existence of positive solution for the following class of singular quasilinear Schrödinger equations: - div ( g 2 ( u ) ∇ u ) + g ( u ) g ′ ( u ) | ∇ u | 2 + V ( x ) u = f ( u ) | x | a in R 2 , where a ∈ ( 0 , 2 ) , g : R → R + is a continuously differentiable function, V ( x ) is a positive potential and the nonlinearity f ( u ) can exhibit critical exponential growth. In order to prove our existence result, we combine minimax methods with a singular version of the Trudinger-Moser inequality.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-022-02064-9