Mean Field Derivation of DNLS from the Bose–Hubbard Model
We prove that the flow of the discrete nonlinear Schrödinger equation (DNLS) is the mean field limit of the quantum dynamics of the Bose–Hubbard model for N interacting particles. In particular, we show that the Wick symbol of the annihilation operators evolved in the Heisenberg picture converges, a...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2022-05, Vol.23 (5), p.1525-1553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the flow of the discrete nonlinear Schrödinger equation (DNLS) is the mean field limit of the quantum dynamics of the Bose–Hubbard model for N interacting particles. In particular, we show that the Wick symbol of the annihilation operators evolved in the Heisenberg picture converges, as
N
becomes large, to the solution of the DNLS. A quantitative
L
p
-estimate, for any
p
≥
1
, is obtained with a linear dependence on time due to a Gaussian measure on initial data coherent states. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-021-01112-6 |