Spectral splitting method for nonlinear Schrödinger equations with quadratic potential

•We give an approximate solution to nonlinear Schrödinger equations.•We separately treat the linear Schrödinger equation and the nonlinear term.•We give a precise estimate of the remainder term.•We compare the modified spectral splitting approximation with the standard one. In this paper we propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2022-06, Vol.459, p.111154, Article 111154
1. Verfasser: Sacchetti, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We give an approximate solution to nonlinear Schrödinger equations.•We separately treat the linear Schrödinger equation and the nonlinear term.•We give a precise estimate of the remainder term.•We compare the modified spectral splitting approximation with the standard one. In this paper we propose a modified Lie-type spectral splitting approximation where the external potential is of quadratic type. It is proved that we can approximate the solution to a one-dimensional nonlinear Schrödinger equation by solving the linear problem and treating the nonlinear term separately, with a rigorous estimate of the remainder term. Furthermore, we show by means of numerical experiments that such a modified approximation is more efficient than the standard one.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111154