p-winds: An open-source Python code to model planetary outflows and upper atmospheres
Atmospheric escape is considered to be one of the main channels for evolution in sub-Jovian planets, particularly in their early lives. While there are several hypotheses proposed to explain escape in exoplanets, testing them with atmospheric observations remains a challenge. In this context, high-r...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2022-03, Vol.659, p.A62 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atmospheric escape is considered to be one of the main channels for evolution in sub-Jovian planets, particularly in their early lives. While there are several hypotheses proposed to explain escape in exoplanets, testing them with atmospheric observations remains a challenge. In this context, high-resolution transmission spectroscopy of transiting exoplanets for the metastable helium triplet (He 2
3
S) at 1083 nm has emerged as a reliable technique for observing and measuring escape. To aid in the prediction and interpretation of metastable He transmission spectroscopy observations, we developed the code
p-winds
. This is an open-source, fully documented, scalable Python implementation of the one-dimensional, purely H+He Parker wind model for upper atmospheres coupled with ionization balance, ray-tracing, and radiative transfer routines. We demonstrate an atmospheric retrieval by fitting
p-winds
models to the observed metastable He transmission spectrum of the warm Neptune HAT-P-11 b and take the variation in the in-transit absorption caused by transit geometry into account. For this planet, our best fit yields a total atmospheric escape rate of approximately 2.5 × 10
10
g s
−1
and an outflow temperature of 7200 K. The range of retrieved mass loss rates increases significantly when we let the H atom fraction be a free parameter, but its posterior distribution remains unconstrained by He observations alone. The stellar host limb darkening does not have a significant impact on the retrieved escape rate or outflow temperature for HAT-P-11 b. Based on the non-detection of escaping He for GJ 436 b, we are able to rule out total escape rates higher than 3.4 × 10
10
g s
−1
at 99.7% (3
σ
) confidence. |
---|---|
ISSN: | 0004-6361 1432-0746 |
DOI: | 10.1051/0004-6361/202142038 |