On the Local Time of a Stopped Random Walk Attaining a High Level

An integer-valued random walk with zero drift and finite variance stopped at the time of the first hit of the semiaxis is considered. For the random process defined for a variable as the number of visits of this walk to the state and conditioned on the event , a functional limit theorem on its conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2022-03, Vol.316 (1), p.5-25
1. Verfasser: Afanasyev, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An integer-valued random walk with zero drift and finite variance stopped at the time of the first hit of the semiaxis is considered. For the random process defined for a variable as the number of visits of this walk to the state and conditioned on the event , a functional limit theorem on its convergence to the local time of the Brownian high jump is proved.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543822010035