Higher-rank Brill-Noether loci on nodal reducible curves
In this paper we deal with Brill-Noether theory for higher-rank sheaves on a polarized nodal reducible curve \((C,\underline{w})\) following the ideas of [arXiv:alg-geom/9511003v1]. We study the Brill-Noether loci of \(\underline{w}\)-stable depth one sheaves on \(C\) having rank \(r\) on all irredu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we deal with Brill-Noether theory for higher-rank sheaves on a polarized nodal reducible curve \((C,\underline{w})\) following the ideas of [arXiv:alg-geom/9511003v1]. We study the Brill-Noether loci of \(\underline{w}\)-stable depth one sheaves on \(C\) having rank \(r\) on all irreducible components and having small slope. In analogy with what happens in the smooth case, we prove that these loci are closely related to BGN extensions. Moreover, we produce irreducible components of the expected dimension for these Brill-Noether loci. |
---|---|
ISSN: | 2331-8422 |