Iterative Refinement for Multi-Source Visual Domain Adaptation

One of the main challenges in multi-source domain adaptation is how to reduce the domain discrepancy between each source domain and a target domain, and then evaluate the domain relevance to determine how much knowledge should be transferred from different source domains to the target domain. Howeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2022-06, Vol.34 (6), p.2810-2823
Hauptverfasser: Wu, Hanrui, Yan, Yuguang, Lin, Guosheng, Yang, Min, Ng, Michael K., Wu, Qingyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main challenges in multi-source domain adaptation is how to reduce the domain discrepancy between each source domain and a target domain, and then evaluate the domain relevance to determine how much knowledge should be transferred from different source domains to the target domain. However, most prior approaches barely consider both discrepancies and relevance among domains. In this paper, we propose an algorithm, called Iterative Refinement based on Feature Selection and the Wasserstein distance (IRFSW), to solve semi-supervised domain adaptation with multiple sources. Specifically, IRFSW aims to explore both the discrepancies and relevance among domains in an iterative learning procedure, which gradually refines the learning performance until the algorithm stops. In each iteration, for each source domain and the target domain, we develop a sparse model to select features in which the domain discrepancy and training loss are reduced simultaneously. Then a classifier is constructed with the selected features of the source and labeled target data. After that, we exploit optimal transport over the selected features to calculate the transferred weights. The weight values are taken as the ensemble weights to combine the learned classifiers to control the amount of knowledge transferred from source domains to the target domain. Experimental results validate the effectiveness of the proposed method.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2020.3014697