Spectral Analysis of α-Semi Periodic 2-Interval Sturm-Liouville Problems

In this paper, we propose a new type of boundary value problems for 2-interval Sturm-Liouville equations which differs from the classical periodic Sturm-Liouville problems in that, the boundary and transmission conditions depend on a positive parameter α > 0 . We will call this problem α -semi pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2022-09, Vol.21 (3), Article 62
Hauptverfasser: Mukhtarov, O Sh, Aydemir, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a new type of boundary value problems for 2-interval Sturm-Liouville equations which differs from the classical periodic Sturm-Liouville problems in that, the boundary and transmission conditions depend on a positive parameter α > 0 . We will call this problem α -semi periodic Sturm-Liouville problem. It is important to note that our problem is not self-adjoint in the classical Hilbert space of square-integrable functions L 2 [ - π , π ] when the parameter α ≠ 1 . First by using an our own approach we investigated some properties of eigenvalues and their corresponding eigenfunctions. Then, for self-adjoint realization of the problem under consideration we define a different inner product in the classical Hilbert space in which we treated an operator-theoretic formulation. The results obtained generalize and extend similar results of the classical periodic Sturm-Liouville theory, since in the special case α = 1 our problem is transformed into classical periodic Sturm-Liouville problems.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-022-00598-7