Spectral Analysis of α-Semi Periodic 2-Interval Sturm-Liouville Problems
In this paper, we propose a new type of boundary value problems for 2-interval Sturm-Liouville equations which differs from the classical periodic Sturm-Liouville problems in that, the boundary and transmission conditions depend on a positive parameter α > 0 . We will call this problem α -semi pe...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2022-09, Vol.21 (3), Article 62 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a new type of boundary value problems for 2-interval Sturm-Liouville equations which differs from the classical periodic Sturm-Liouville problems in that, the boundary and transmission conditions depend on a positive parameter
α
>
0
.
We will call this problem
α
-semi periodic Sturm-Liouville problem. It is important to note that our problem is not self-adjoint in the classical Hilbert space of square-integrable functions
L
2
[
-
π
,
π
]
when the parameter
α
≠
1
. First by using an our own approach we investigated some properties of eigenvalues and their corresponding eigenfunctions. Then, for self-adjoint realization of the problem under consideration we define a different inner product in the classical Hilbert space in which we treated an operator-theoretic formulation. The results obtained generalize and extend similar results of the classical periodic Sturm-Liouville theory, since in the special case
α
=
1
our problem is transformed into classical periodic Sturm-Liouville problems. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-022-00598-7 |