Enhanced slime mould algorithm with multiple mutation strategy and restart mechanism for global optimization

 Slime mould algorithm (SMA) is a new metaheuristic algorithm proposed in 2020, which has attracted extensive attention from scholars. Similar to other optimization algorithms, SMA also has the drawbacks of slow convergence rate and being trapped in local optimum at times. Therefore, the enhanced SM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2022-01, Vol.42 (6), p.5069-5083
Hauptverfasser: Zheng, Rong, Jia, Heming, Wang, Shuang, Liu, Qingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung: Slime mould algorithm (SMA) is a new metaheuristic algorithm proposed in 2020, which has attracted extensive attention from scholars. Similar to other optimization algorithms, SMA also has the drawbacks of slow convergence rate and being trapped in local optimum at times. Therefore, the enhanced SMA named as ESMA is presented in this paper for solving global optimization problems. Two effective methods composed of multiple mutation strategy (MMS) and restart mechanism (RM) are embedded into the original SMA. MMS is utilized to increase the population diversity, and the RM is used to avoid the local optimum. To verify the ESMA’s performance, twenty-three classical benchmark functions are employed, as well as three well-known engineering design problems, including welded beam design, pressure vessel design and speed reducer design. Several famous optimization algorithms are also chosen for comparison. Experimental results show that the ESMA outperforms other optimization algorithms in most of the test functions with faster convergence speed and higher solution accuracy, which indicates the merits of proposed ESMA. The results of Wilcoxon signed-rank test also reveal that ESMA is significant superior to other comparative optimization algorithms. Moreover, the results of three constrained engineering design problems demonstrate that ESMA is better than comparative algorithms.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-211408