Speaker Identification using Frequency Dsitribution in the Transform Domain

In this paper, we propose Speaker Identification using the frequency distribution of various transforms like DFT (Discrete Fourier Transform), DCT (Discrete Cosine Transform), DST (Discrete Sine Transform), Hartley, Walsh, Haar and Kekre transforms. The speech signal spoken by a particular speaker i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2012-01, Vol.3 (2)
Hauptverfasser: B, H, Kulkarni, Vaishali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose Speaker Identification using the frequency distribution of various transforms like DFT (Discrete Fourier Transform), DCT (Discrete Cosine Transform), DST (Discrete Sine Transform), Hartley, Walsh, Haar and Kekre transforms. The speech signal spoken by a particular speaker is converted into frequency domain by applying the different transform techniques. The distribution in the transform domain is utilized to extract the feature vectors in the training and the matching phases. The results obtained by using all the seven transform techniques have been analyzed and compared. It can be seen that DFT, DCT, DST and Hartley transform give comparatively similar results (Above 96%). The results obtained by using Haar and Kekre transform are very poor. The best results are obtained by using DFT (97.19% for a feature vector of size 40).
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2012.030213