Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches

This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2012-01, Vol.3 (11)
Hauptverfasser: Mijanur, Md, Al-Amin, Md
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title International journal of advanced computer science & applications
container_volume 3
creator Mijanur, Md
Al-Amin, Md
description This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96%.
doi_str_mv 10.14569/IJACSA.2012.031121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656725303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656725303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-cc44f5899914aa04fa2e465aae1e347922cd9da572239ad9d1dfed47740e14ff3</originalsourceid><addsrcrecordid>eNo1kE1Lw0AURQdRsNT-AjcB16nzmXSWMbRaKbiIggtheExempQ2iTMT0H9vbPRt3l0c7oVDyC2jSyZVou-3z1leZEtOGV9SwRhnF2TGmUpipVJ6ec6rmNH0_ZosvD_Q8YTmyUrMyEfetaFph27w0QO0-yNERY9o66jA_QnbAKHp2mjwTbuPirpzIQ7oTv_QBiEMDn20_goO7JnN-t51YGv0N-SqgqPHxd-fk7fN-jV_incvj9s828WWKx5ia6Ws1EprzSQAlRVwlIkCQIZCpppzW-oSVMq50DBGVlZYyjSVFJmsKjEnd1PvOPw5oA_m0A2uHScNT1SSciWoGCkxUdZ13jusTO-aE7hvw6g5mzSTSfNr0kwmxQ_AXmeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656725303</pqid></control><display><type>article</type><title>Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mijanur, Md ; Al-Amin, Md</creator><creatorcontrib>Mijanur, Md ; Al-Amin, Md</creatorcontrib><description>This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96%.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2012.031121</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Centroids ; Feature extraction ; Frequency domain analysis ; Segmentation ; Sentences ; Sequences ; Speech ; Speech recognition ; Time domain analysis ; Word boundaries ; Words (language)</subject><ispartof>International journal of advanced computer science &amp; applications, 2012-01, Vol.3 (11)</ispartof><rights>2012. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-cc44f5899914aa04fa2e465aae1e347922cd9da572239ad9d1dfed47740e14ff3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mijanur, Md</creatorcontrib><creatorcontrib>Al-Amin, Md</creatorcontrib><title>Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches</title><title>International journal of advanced computer science &amp; applications</title><description>This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96%.</description><subject>Algorithms</subject><subject>Centroids</subject><subject>Feature extraction</subject><subject>Frequency domain analysis</subject><subject>Segmentation</subject><subject>Sentences</subject><subject>Sequences</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Time domain analysis</subject><subject>Word boundaries</subject><subject>Words (language)</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kE1Lw0AURQdRsNT-AjcB16nzmXSWMbRaKbiIggtheExempQ2iTMT0H9vbPRt3l0c7oVDyC2jSyZVou-3z1leZEtOGV9SwRhnF2TGmUpipVJ6ec6rmNH0_ZosvD_Q8YTmyUrMyEfetaFph27w0QO0-yNERY9o66jA_QnbAKHp2mjwTbuPirpzIQ7oTv_QBiEMDn20_goO7JnN-t51YGv0N-SqgqPHxd-fk7fN-jV_incvj9s828WWKx5ia6Ws1EprzSQAlRVwlIkCQIZCpppzW-oSVMq50DBGVlZYyjSVFJmsKjEnd1PvOPw5oA_m0A2uHScNT1SSciWoGCkxUdZ13jusTO-aE7hvw6g5mzSTSfNr0kwmxQ_AXmeg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Mijanur, Md</creator><creator>Al-Amin, Md</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20120101</creationdate><title>Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches</title><author>Mijanur, Md ; Al-Amin, Md</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-cc44f5899914aa04fa2e465aae1e347922cd9da572239ad9d1dfed47740e14ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Centroids</topic><topic>Feature extraction</topic><topic>Frequency domain analysis</topic><topic>Segmentation</topic><topic>Sentences</topic><topic>Sequences</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Time domain analysis</topic><topic>Word boundaries</topic><topic>Words (language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mijanur, Md</creatorcontrib><creatorcontrib>Al-Amin, Md</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mijanur, Md</au><au>Al-Amin, Md</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>3</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96%.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2012.031121</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2012-01, Vol.3 (11)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2656725303
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Centroids
Feature extraction
Frequency domain analysis
Segmentation
Sentences
Sequences
Speech
Speech recognition
Time domain analysis
Word boundaries
Words (language)
title Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Bangla%20Speech%20Segmentation%20using%20Short-term%20Speech%20Features%20Extraction%20Approaches&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Mijanur,%20Md&rft.date=2012-01-01&rft.volume=3&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2012.031121&rft_dat=%3Cproquest_cross%3E2656725303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656725303&rft_id=info:pmid/&rfr_iscdi=true