Continuous Bangla Speech Segmentation using Short-term Speech Features Extraction Approaches

This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2012-01, Vol.3 (11)
Hauptverfasser: Mijanur, Md, Al-Amin, Md
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents simple and novel feature extraction approaches for segmenting continuous Bangla speech sentences into words/sub-words. These methods are based on two simple speech features, namely the time-domain features and the frequency-domain features. The time-domain features, such as short-time signal energy, short-time average zero crossing rate and the frequency-domain features, such as spectral centroid and spectral flux features are extracted in this research work. After the feature sequences are extracted, a simple dynamic thresholding criterion is applied in order to detect the word boundaries and label the entire speech sentence into a sequence of words/sub-words. All the algorithms used in this research are implemented in Matlab and the implemented automatic speech segmentation system achieved segmentation accuracy of 96%.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2012.031121