Prediction of Mental Health Problems Among Children Using Machine Learning Techniques
Early diagnosis of mental health problems helps the professionals to treat it at an earlier stage and improves the patients’ quality of life. So, there is an urgent need to treat basic mental health problems that prevail among children which may lead to complicated problems, if not treated at an ear...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2016, Vol.7 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Early diagnosis of mental health problems helps the professionals to treat it at an earlier stage and improves the patients’ quality of life. So, there is an urgent need to treat basic mental health problems that prevail among children which may lead to complicated problems, if not treated at an early stage. Machine learning Techniques are currently well suited for analyzing medical data and diagnosing the problem. This research has identified eight machine learning techniques and has compared their performances on different measures of accuracy in diagnosing five basic mental health problems. A data set consisting of sixty cases is collected for training and testing the performance of the techniques. Twenty-five attributes have been identified as important for diagnosing the problem from the documents. The attributes have been reduced by applying Feature Selection algorithms over the full attribute data set. The accuracy over the full attribute set and selected attribute set on various machine learning techniques have been compared. It is evident from the results that the three classifiers viz., Multilayer Perceptron, Multiclass Classifier and LAD Tree produced more accurate results and there is only a slight difference between their performances over full attribute set and selected attribute set. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2016.070176 |