A Generic Methodology for Clustering to Maximises Inter-Cluster Inertia
This paper proposes a novel clustering methodology which undeniably manages to offer results with a higher inter-cluster inertia for a better clustering. The advantage obtained with this methodology is due to an algorithm that showed beforehand its efficiency in clustering exercises, MC- DBSCAN, whi...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2017-01, Vol.8 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel clustering methodology which undeniably manages to offer results with a higher inter-cluster inertia for a better clustering. The advantage obtained with this methodology is due to an algorithm that showed beforehand its efficiency in clustering exercises, MC- DBSCAN, which is associated to an iterative process with a potential of auto-adjustment of the weights of the pertinent criteria that allows the reclassification of objects of the two closest clusters through each iteration, as well as the aptitude of the auto-evaluation of the precision of the clustering during the clustering process. This work conducts the experiments using the well-known benchmark, ‘Seismic’, ‘Landform-Identification’ and ‘Image Segmentation’, to compare the performance of the proposed methodology with other algorithms (K-means, EM, CURE and MC-DBSCAN). The experimental results demonstrate that the proposed solution has good quality of clustering results. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2017.081125 |