Task Scheduling in Cloud Computing using Lion Optimization Algorithm

Cloud computing has spread fast because of its high performance distributed computing. It offers services and access to shared resources to internet users through service providers. Efficient performance of task scheduling in clouds is one of the most important research issues which needs to be focu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2017-01, Vol.8 (11)
Hauptverfasser: Almezeini, Nora, Hafez, Alaaeldin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud computing has spread fast because of its high performance distributed computing. It offers services and access to shared resources to internet users through service providers. Efficient performance of task scheduling in clouds is one of the most important research issues which needs to be focused on. Various task scheduling algorithms for cloud based on metaheuristic techniques have been examined and showed high performance in reasonable time such as scheduling algorithms based on Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). In this paper, we propose a new task-scheduling algorithm based on Lion Optimization Algorithm (LOA), for cloud computing. LOA is a nature-inspired population-based algorithm for obtaining global optimization over a search space. It was proposed by Maziar Yazdani and Fariborz Jolai in 2015. It is a metaheuristic algorithm inspired by the special lifestyle of lions and their cooperative characteristics. The proposed task scheduling algorithm is compared with scheduling algorithms based on Genetic Algorithm and Particle Swarm Optimization. The results demonstrate the high performance of the proposed algorithm, when compared with the other algorithms.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2017.081110