Intelligent System for Detection of Micro-Calcification in Breast Cancer

Recently; medical image mining has become one of the well-recognized research area(s) of machine learning and artificial intelligence techniques have been vastly used in various computer added diagnostic systems. Specifically; breast cancer classification problem is considered as one of the most sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2017-01, Vol.8 (7)
Hauptverfasser: Abdul, M., Ahmed, Jamil, Waqas, Ahmed, Sawand, Ajmal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently; medical image mining has become one of the well-recognized research area(s) of machine learning and artificial intelligence techniques have been vastly used in various computer added diagnostic systems. Specifically; breast cancer classification problem is considered as one of the most significant problems. For instance, complex, diverse and heterogamous malignant features of micro-calcification in DICOM (Digital Communication in Medicine) images of mammography are very difficult to classify because the persistence of noise in mammogram images creates lots of confusions for doctors. In order to reduce the chances of misdiagnosis and to discernment the difference between malignant and benign lesions of micro-calcification this paper proposes a system so called “Intelligent System For Detection of Micro-Calcification in Breast Cancer” by considering all above stated problems. Overall our system comprises over three main stages. In first stage, adaptive threshold algorithm is used to reduce the noise, and canny edge detection algorithm is used to detect the edges of every macro or micro classification. In second stage, deginated as feature selection is done by using auto-crop algorithm, which crops all types of calcifications and lesions by proposed algorithm so called CFEDNN (Calcification Feature Extraction Deep Neural Networks) which is designed to avoid the manual ROIs (Region of Interest). Decision model is constructed by using DNN (Deep Neural Networks) and the best classification accuracy is measured as 95.6%.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2017.080751