Empirical Evaluation of SVM for Facial Expression Recognition
Support Vector Machines (SVMs) have shown bet-ter generalization and classification capabilities in different appli-cations of computer vision; SVM classifies underlying data by a hyperplane that can separate the two classes by maintaining the maximum margin between the support vectors of the respec...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2018, Vol.9 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Support Vector Machines (SVMs) have shown bet-ter generalization and classification capabilities in different appli-cations of computer vision; SVM classifies underlying data by a hyperplane that can separate the two classes by maintaining the maximum margin between the support vectors of the respective classes. An empirical analysis of SVMs on the facial expression recognition task is reported with high intra and low inter class variations by conducting an extensive set of experiments on a large-scale Fer 2013 dataset. Three different kernel functions of SVM are used; linear kernel, quadratic kernel and cubic kernel, whereas, Histogram of Oriented Gradient (HoG) is used as a feature descriptor. Cubic Kernel achieves highest accuracy on Fer 2013 dataset using HoG. |
---|---|
ISSN: | 2158-107X 2156-5570 |
DOI: | 10.14569/IJACSA.2018.091195 |