Accuracy Performance Degradation in Image Classification Models due to Concept Drift

Big data is playing a significant role in the current computing revolution. Industries and organizations are utilizing their insights for Business Intelligence by using Deep Learning Networks (DLN). However, dynamic characteristics of BD introduce many critical issues for DLN; Concept Drift (CD) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2019, Vol.10 (5)
Hauptverfasser: Hashmani, Manzoor Ahmed, Muslim, Syed, Alhussain, Hitham, Rehman, Mobashar, Budiman, Arif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Big data is playing a significant role in the current computing revolution. Industries and organizations are utilizing their insights for Business Intelligence by using Deep Learning Networks (DLN). However, dynamic characteristics of BD introduce many critical issues for DLN; Concept Drift (CD) is one of them. CD issue appears frequently in Online Supervised Learning environments in which data trends change over time. The problem may even worsen in a BD environment due to the veracity and variability factors. The CD issue may render the DLN inapplicable by degrading the accuracy of classification results in DLN which is a very serious issue that needs to be addressed. Therefore, these DLN need to quickly adapt to changes for maintaining the accuracy level of the results. To overcome classification accuracy, we need some dynamical changes in the existing DLN. Therefore, in this paper, we examine some of the existing Shallow Learning and Deep Learning models and their behavior before and after the Concept Drift (in experiment 1) and validate the pre-trained Deep Learning network (ResNet-50). In future work, this experiment will examine the most recent pre-trained DLN (Alex Net, VGG16, VGG19) and identify their suitability to overcome Concept Drift using fine-tuning and transfer learning approaches.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2019.0100552