Oxidation of copper electrodes on flexible polyimide substrates for non-enzymatic glucose sensing

The integration of non-enzymatic glucose sensing entities into device designs compatible with industrial production is crucial for the broad take-up of non-invasive glucose sensors. Copper and its oxides have proven to be promising candidates for electrochemical glucose sensing. They can be fabricat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research express 2022-04, Vol.9 (4), p.45010
Hauptverfasser: Liu, Shijia, Ay, Ayse, Luo, Qiaochu, Hu, Xiangqi, Białas, Katarzyna, Dutta, Gorachand, Moschou, Despina, Regoutz, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The integration of non-enzymatic glucose sensing entities into device designs compatible with industrial production is crucial for the broad take-up of non-invasive glucose sensors. Copper and its oxides have proven to be promising candidates for electrochemical glucose sensing. They can be fabricated in situ enabling integration with standard copper metallisation schemes for example in printed circuit boards (PCBs). Here, copper oxide electrodes are prepared on flexible polyimide substrates through direct annealing of patterned electrode structures. Both annealing temperature and duration are tuned to optimise the sensor surface for optimum glucose detection. A combination of microscopy and spectroscopy techniques is used to follow changes to the surface morphology and chemistry under the varying annealing conditions. The observed physico-chemical electrode characteristics are directly compared with electrochemical testing of the sensing performance, including chronoamperommetry and interference experiments. A clear influence of both aspects on the sensing behaviour is observed and an anneal at 250 °C for 8 h is identified as the best compromise between sensor performance and low interference from competing analytes.
ISSN:2053-1591
2053-1591
DOI:10.1088/2053-1591/ac656f