RCV-based error density estimation in the ultrahigh dimensional additive model
In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved tw...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2022-05, Vol.65 (5), p.1003-1028 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 5 |
container_start_page | 1003 |
container_title | Science China. Mathematics |
container_volume | 65 |
creator | Zou, Feng Cui, Hengjian |
description | In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well. |
doi_str_mv | 10.1007/s11425-019-1722-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655589556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655589556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvAczSfm-QoxS8oCqJeQ3aTbVO2m5qkQv-9KSt4ci4zA887vPMCcEXwDcFY3mZCOBUIE42IpBTREzAjqqmbauhpnRvJkaSKnYN5zhtci2nMJZuBl7fFJ2pt9g76lGKCzo85lAP0uYStLSGOMIywrD3cDyXZdVitoQvbIxVHO0DrXCjh28NtdH64BGe9HbKf__YL8PFw_754QsvXx-fF3RJ1lDcFuc7ztsdMtFq0Vrd91zFLFGPcCsFdL5yjkgjZWylob21HO628VlJx2RLq2AW4nu7uUvzaV69mE_ep-smGNkIIpYVoKkUmqksx5-R7s0v1qXQwBJtjcmZKztTkzDE5Q6uGTppc2XHl09_l_0U_jwNxLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655589556</pqid></control><display><type>article</type><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zou, Feng ; Cui, Hengjian</creator><creatorcontrib>Zou, Feng ; Cui, Hengjian</creatorcontrib><description>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-019-1722-2</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Density ; Error analysis ; Kernels ; Mathematics ; Mathematics and Statistics ; Spline functions</subject><ispartof>Science China. Mathematics, 2022-05, Vol.65 (5), p.1003-1028</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</citedby><cites>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-019-1722-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-019-1722-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zou, Feng</creatorcontrib><creatorcontrib>Cui, Hengjian</creatorcontrib><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</description><subject>Applications of Mathematics</subject><subject>Density</subject><subject>Error analysis</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spline functions</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWLQ_wFvAczSfm-QoxS8oCqJeQ3aTbVO2m5qkQv-9KSt4ci4zA887vPMCcEXwDcFY3mZCOBUIE42IpBTREzAjqqmbauhpnRvJkaSKnYN5zhtci2nMJZuBl7fFJ2pt9g76lGKCzo85lAP0uYStLSGOMIywrD3cDyXZdVitoQvbIxVHO0DrXCjh28NtdH64BGe9HbKf__YL8PFw_754QsvXx-fF3RJ1lDcFuc7ztsdMtFq0Vrd91zFLFGPcCsFdL5yjkgjZWylob21HO628VlJx2RLq2AW4nu7uUvzaV69mE_ep-smGNkIIpYVoKkUmqksx5-R7s0v1qXQwBJtjcmZKztTkzDE5Q6uGTppc2XHl09_l_0U_jwNxLA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zou, Feng</creator><creator>Cui, Hengjian</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><author>Zou, Feng ; Cui, Hengjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Density</topic><topic>Error analysis</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Feng</creatorcontrib><creatorcontrib>Cui, Hengjian</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Feng</au><au>Cui, Hengjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RCV-based error density estimation in the ultrahigh dimensional additive model</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>65</volume><issue>5</issue><spage>1003</spage><epage>1028</epage><pages>1003-1028</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-019-1722-2</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2022-05, Vol.65 (5), p.1003-1028 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2655589556 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Density Error analysis Kernels Mathematics Mathematics and Statistics Spline functions |
title | RCV-based error density estimation in the ultrahigh dimensional additive model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RCV-based%20error%20density%20estimation%20in%20the%20ultrahigh%20dimensional%20additive%20model&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zou,%20Feng&rft.date=2022-05-01&rft.volume=65&rft.issue=5&rft.spage=1003&rft.epage=1028&rft.pages=1003-1028&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-019-1722-2&rft_dat=%3Cproquest_cross%3E2655589556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655589556&rft_id=info:pmid/&rfr_iscdi=true |