RCV-based error density estimation in the ultrahigh dimensional additive model

In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2022-05, Vol.65 (5), p.1003-1028
Hauptverfasser: Zou, Feng, Cui, Hengjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 5
container_start_page 1003
container_title Science China. Mathematics
container_volume 65
creator Zou, Feng
Cui, Hengjian
description In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.
doi_str_mv 10.1007/s11425-019-1722-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655589556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655589556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvAczSfm-QoxS8oCqJeQ3aTbVO2m5qkQv-9KSt4ci4zA887vPMCcEXwDcFY3mZCOBUIE42IpBTREzAjqqmbauhpnRvJkaSKnYN5zhtci2nMJZuBl7fFJ2pt9g76lGKCzo85lAP0uYStLSGOMIywrD3cDyXZdVitoQvbIxVHO0DrXCjh28NtdH64BGe9HbKf__YL8PFw_754QsvXx-fF3RJ1lDcFuc7ztsdMtFq0Vrd91zFLFGPcCsFdL5yjkgjZWylob21HO628VlJx2RLq2AW4nu7uUvzaV69mE_ep-smGNkIIpYVoKkUmqksx5-R7s0v1qXQwBJtjcmZKztTkzDE5Q6uGTppc2XHl09_l_0U_jwNxLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655589556</pqid></control><display><type>article</type><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Zou, Feng ; Cui, Hengjian</creator><creatorcontrib>Zou, Feng ; Cui, Hengjian</creatorcontrib><description>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-019-1722-2</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Density ; Error analysis ; Kernels ; Mathematics ; Mathematics and Statistics ; Spline functions</subject><ispartof>Science China. Mathematics, 2022-05, Vol.65 (5), p.1003-1028</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</citedby><cites>FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-019-1722-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-019-1722-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zou, Feng</creatorcontrib><creatorcontrib>Cui, Hengjian</creatorcontrib><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</description><subject>Applications of Mathematics</subject><subject>Density</subject><subject>Error analysis</subject><subject>Kernels</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spline functions</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWLQ_wFvAczSfm-QoxS8oCqJeQ3aTbVO2m5qkQv-9KSt4ci4zA887vPMCcEXwDcFY3mZCOBUIE42IpBTREzAjqqmbauhpnRvJkaSKnYN5zhtci2nMJZuBl7fFJ2pt9g76lGKCzo85lAP0uYStLSGOMIywrD3cDyXZdVitoQvbIxVHO0DrXCjh28NtdH64BGe9HbKf__YL8PFw_754QsvXx-fF3RJ1lDcFuc7ztsdMtFq0Vrd91zFLFGPcCsFdL5yjkgjZWylob21HO628VlJx2RLq2AW4nu7uUvzaV69mE_ep-smGNkIIpYVoKkUmqksx5-R7s0v1qXQwBJtjcmZKztTkzDE5Q6uGTppc2XHl09_l_0U_jwNxLA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zou, Feng</creator><creator>Cui, Hengjian</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>RCV-based error density estimation in the ultrahigh dimensional additive model</title><author>Zou, Feng ; Cui, Hengjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-dce4bf035b95ba9bfcc3a18334a554df5dd27157fa752faac2c98e987847b12d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Density</topic><topic>Error analysis</topic><topic>Kernels</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spline functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Feng</creatorcontrib><creatorcontrib>Cui, Hengjian</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Feng</au><au>Cui, Hengjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RCV-based error density estimation in the ultrahigh dimensional additive model</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>65</volume><issue>5</issue><spage>1003</spage><epage>1028</epage><pages>1003-1028</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-019-1722-2</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2022-05, Vol.65 (5), p.1003-1028
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2655589556
source SpringerNature Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Density
Error analysis
Kernels
Mathematics
Mathematics and Statistics
Spline functions
title RCV-based error density estimation in the ultrahigh dimensional additive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RCV-based%20error%20density%20estimation%20in%20the%20ultrahigh%20dimensional%20additive%20model&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zou,%20Feng&rft.date=2022-05-01&rft.volume=65&rft.issue=5&rft.spage=1003&rft.epage=1028&rft.pages=1003-1028&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-019-1722-2&rft_dat=%3Cproquest_cross%3E2655589556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655589556&rft_id=info:pmid/&rfr_iscdi=true