RCV-based error density estimation in the ultrahigh dimensional additive model

In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2022-05, Vol.65 (5), p.1003-1028
Hauptverfasser: Zou, Feng, Cui, Hengjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model, where the number of variables is larger than the sample size. First, a smoothing method based on B-splines is applied to the estimation of regression functions. Second, an improved two-stage refitted cross-validation (RCV) procedure by random splitting technique is used to obtain the residuals of the model, and then the residual-based kernel method is applied to estimate the error density function. Under suitable sparse conditions, the large sample properties of the estimator including the weak and strong consistency, as well as normality and the law of the iterated logarithm are obtained. Especially, the relationship between the sparsity and the convergence rate of the kernel density estimator is given. The methodology is illustrated by simulations and a real data example, which suggests that the proposed method performs well.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-019-1722-2