On the symmetric algebra of certain first syzygy modules

Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.391-409
Hauptverfasser: Restuccia, Gaetana, Tang, Zhongming, Utano, Rosanna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 2
container_start_page 391
container_title Czechoslovak Mathematical Journal
container_volume 72
creator Restuccia, Gaetana
Tang, Zhongming
Utano, Rosanna
description Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of the first syzygy module Syz 1 ( m ) of m . When the minimal generators of I are all of degree 2, the dimension of Sym R (Syz 1 ( m )) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.
doi_str_mv 10.21136/CMJ.2021.0508-20
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655589548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655589548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-68c839143ccb0cbb0732379bddc365f16b80214d143b5559d813e6baa376f2343</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssU7x-BVniSqeKuoG1pbtOCFVHsVOFuHrcSkSK1Yzi3PujC5C10BWFIDJ2_Xry4oSCisiiMooOUELEDnNCuBwihaEAGRccnqOLmLcEUIYcLVAatvj8cPjOHedH0PjsGlrb4PBQ4WdD6Npelw1IY4J-ZrrGXdDObU-XqKzyrTRX_3OJXp_uH9bP2Wb7ePz-m6TOSrVmEnlFEs_MOcscdaSnFGWF7YsHZOiAmlVepqXibBCiKJUwLy0xrBcVpRxtkQ3x9x9GD4nH0e9G6bQp5OaymSoQnCVKDhSLgwxBl_pfWg6E2YNRP8UpFNB-lCQPhSUtuTQoxMT29c-_CX_L30DSw5mxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655589548</pqid></control><display><type>article</type><title>On the symmetric algebra of certain first syzygy modules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</creator><creatorcontrib>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</creatorcontrib><description>Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of the first syzygy module Syz 1 ( m ) of m . When the minimal generators of I are all of degree 2, the dimension of Sym R (Syz 1 ( m )) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2021.0508-20</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Convex and Discrete Geometry ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Modules ; Ordinary Differential Equations ; Polynomials ; Rings (mathematics)</subject><ispartof>Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.391-409</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2021.0508-20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2021.0508-20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Restuccia, Gaetana</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Utano, Rosanna</creatorcontrib><title>On the symmetric algebra of certain first syzygy modules</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of the first syzygy module Syz 1 ( m ) of m . When the minimal generators of I are all of degree 2, the dimension of Sym R (Syz 1 ( m )) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Ordinary Differential Equations</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssU7x-BVniSqeKuoG1pbtOCFVHsVOFuHrcSkSK1Yzi3PujC5C10BWFIDJ2_Xry4oSCisiiMooOUELEDnNCuBwihaEAGRccnqOLmLcEUIYcLVAatvj8cPjOHedH0PjsGlrb4PBQ4WdD6Npelw1IY4J-ZrrGXdDObU-XqKzyrTRX_3OJXp_uH9bP2Wb7ePz-m6TOSrVmEnlFEs_MOcscdaSnFGWF7YsHZOiAmlVepqXibBCiKJUwLy0xrBcVpRxtkQ3x9x9GD4nH0e9G6bQp5OaymSoQnCVKDhSLgwxBl_pfWg6E2YNRP8UpFNB-lCQPhSUtuTQoxMT29c-_CX_L30DSw5mxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Restuccia, Gaetana</creator><creator>Tang, Zhongming</creator><creator>Utano, Rosanna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>On the symmetric algebra of certain first syzygy modules</title><author>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-68c839143ccb0cbb0732379bddc365f16b80214d143b5559d813e6baa376f2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Ordinary Differential Equations</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Restuccia, Gaetana</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Utano, Rosanna</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Restuccia, Gaetana</au><au>Tang, Zhongming</au><au>Utano, Rosanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the symmetric algebra of certain first syzygy modules</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>391</spage><epage>409</epage><pages>391-409</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of the first syzygy module Syz 1 ( m ) of m . When the minimal generators of I are all of degree 2, the dimension of Sym R (Syz 1 ( m )) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2021.0508-20</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.391-409
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2655589548
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Convex and Discrete Geometry
Lower bounds
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Modules
Ordinary Differential Equations
Polynomials
Rings (mathematics)
title On the symmetric algebra of certain first syzygy modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20symmetric%20algebra%20of%20certain%20first%20syzygy%20modules&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Restuccia,%20Gaetana&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=391&rft.epage=409&rft.pages=391-409&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2021.0508-20&rft_dat=%3Cproquest_cross%3E2655589548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655589548&rft_id=info:pmid/&rfr_iscdi=true