On the symmetric algebra of certain first syzygy modules
Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.391-409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 391 |
container_title | Czechoslovak Mathematical Journal |
container_volume | 72 |
creator | Restuccia, Gaetana Tang, Zhongming Utano, Rosanna |
description | Let (
R
,
m
) be a standard graded
K
-algebra over a field
K
. Then
R
can be written as
S
/
I
, where
I
⊆ (
x
1
,…,
x
n
)
2
is a graded ideal of a polynomial ring
S
=
K
[
x
1
,…,
x
n
]. Assume that
n
⩽ 3 and
I
is a strongly stable monomial ideal. We study the symmetric algebra Sym
R
(Syz
1
(
m
)) of the first syzygy module Syz
1
(
m
) of
m
. When the minimal generators of
I
are all of degree 2, the dimension of Sym
R
(Syz
1
(
m
)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached. |
doi_str_mv | 10.21136/CMJ.2021.0508-20 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655589548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655589548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-68c839143ccb0cbb0732379bddc365f16b80214d143b5559d813e6baa376f2343</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssU7x-BVniSqeKuoG1pbtOCFVHsVOFuHrcSkSK1Yzi3PujC5C10BWFIDJ2_Xry4oSCisiiMooOUELEDnNCuBwihaEAGRccnqOLmLcEUIYcLVAatvj8cPjOHedH0PjsGlrb4PBQ4WdD6Npelw1IY4J-ZrrGXdDObU-XqKzyrTRX_3OJXp_uH9bP2Wb7ePz-m6TOSrVmEnlFEs_MOcscdaSnFGWF7YsHZOiAmlVepqXibBCiKJUwLy0xrBcVpRxtkQ3x9x9GD4nH0e9G6bQp5OaymSoQnCVKDhSLgwxBl_pfWg6E2YNRP8UpFNB-lCQPhSUtuTQoxMT29c-_CX_L30DSw5mxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655589548</pqid></control><display><type>article</type><title>On the symmetric algebra of certain first syzygy modules</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</creator><creatorcontrib>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</creatorcontrib><description>Let (
R
,
m
) be a standard graded
K
-algebra over a field
K
. Then
R
can be written as
S
/
I
, where
I
⊆ (
x
1
,…,
x
n
)
2
is a graded ideal of a polynomial ring
S
=
K
[
x
1
,…,
x
n
]. Assume that
n
⩽ 3 and
I
is a strongly stable monomial ideal. We study the symmetric algebra Sym
R
(Syz
1
(
m
)) of the first syzygy module Syz
1
(
m
) of
m
. When the minimal generators of
I
are all of degree 2, the dimension of Sym
R
(Syz
1
(
m
)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2021.0508-20</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Analysis ; Convex and Discrete Geometry ; Lower bounds ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Modules ; Ordinary Differential Equations ; Polynomials ; Rings (mathematics)</subject><ispartof>Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.391-409</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2021</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2021.0508-20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2021.0508-20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Restuccia, Gaetana</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Utano, Rosanna</creatorcontrib><title>On the symmetric algebra of certain first syzygy modules</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>Let (
R
,
m
) be a standard graded
K
-algebra over a field
K
. Then
R
can be written as
S
/
I
, where
I
⊆ (
x
1
,…,
x
n
)
2
is a graded ideal of a polynomial ring
S
=
K
[
x
1
,…,
x
n
]. Assume that
n
⩽ 3 and
I
is a strongly stable monomial ideal. We study the symmetric algebra Sym
R
(Syz
1
(
m
)) of the first syzygy module Syz
1
(
m
) of
m
. When the minimal generators of
I
are all of degree 2, the dimension of Sym
R
(Syz
1
(
m
)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Lower bounds</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Ordinary Differential Equations</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssU7x-BVniSqeKuoG1pbtOCFVHsVOFuHrcSkSK1Yzi3PujC5C10BWFIDJ2_Xry4oSCisiiMooOUELEDnNCuBwihaEAGRccnqOLmLcEUIYcLVAatvj8cPjOHedH0PjsGlrb4PBQ4WdD6Npelw1IY4J-ZrrGXdDObU-XqKzyrTRX_3OJXp_uH9bP2Wb7ePz-m6TOSrVmEnlFEs_MOcscdaSnFGWF7YsHZOiAmlVepqXibBCiKJUwLy0xrBcVpRxtkQ3x9x9GD4nH0e9G6bQp5OaymSoQnCVKDhSLgwxBl_pfWg6E2YNRP8UpFNB-lCQPhSUtuTQoxMT29c-_CX_L30DSw5mxg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Restuccia, Gaetana</creator><creator>Tang, Zhongming</creator><creator>Utano, Rosanna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>On the symmetric algebra of certain first syzygy modules</title><author>Restuccia, Gaetana ; Tang, Zhongming ; Utano, Rosanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-68c839143ccb0cbb0732379bddc365f16b80214d143b5559d813e6baa376f2343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Lower bounds</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Ordinary Differential Equations</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Restuccia, Gaetana</creatorcontrib><creatorcontrib>Tang, Zhongming</creatorcontrib><creatorcontrib>Utano, Rosanna</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Restuccia, Gaetana</au><au>Tang, Zhongming</au><au>Utano, Rosanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the symmetric algebra of certain first syzygy modules</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>391</spage><epage>409</epage><pages>391-409</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let (
R
,
m
) be a standard graded
K
-algebra over a field
K
. Then
R
can be written as
S
/
I
, where
I
⊆ (
x
1
,…,
x
n
)
2
is a graded ideal of a polynomial ring
S
=
K
[
x
1
,…,
x
n
]. Assume that
n
⩽ 3 and
I
is a strongly stable monomial ideal. We study the symmetric algebra Sym
R
(Syz
1
(
m
)) of the first syzygy module Syz
1
(
m
) of
m
. When the minimal generators of
I
are all of degree 2, the dimension of Sym
R
(Syz
1
(
m
)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2021.0508-20</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-4642 |
ispartof | Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.391-409 |
issn | 0011-4642 1572-9141 |
language | eng |
recordid | cdi_proquest_journals_2655589548 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Convex and Discrete Geometry Lower bounds Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Modules Ordinary Differential Equations Polynomials Rings (mathematics) |
title | On the symmetric algebra of certain first syzygy modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20symmetric%20algebra%20of%20certain%20first%20syzygy%20modules&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Restuccia,%20Gaetana&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=391&rft.epage=409&rft.pages=391-409&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2021.0508-20&rft_dat=%3Cproquest_cross%3E2655589548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655589548&rft_id=info:pmid/&rfr_iscdi=true |