On the symmetric algebra of certain first syzygy modules
Let ( R , m ) be a standard graded K -algebra over a field K . Then R can be written as S / I , where I ⊆ ( x 1 ,…, x n ) 2 is a graded ideal of a polynomial ring S = K [ x 1 ,…, x n ]. Assume that n ⩽ 3 and I is a strongly stable monomial ideal. We study the symmetric algebra Sym R (Syz 1 ( m )) of...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.391-409 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (
R
,
m
) be a standard graded
K
-algebra over a field
K
. Then
R
can be written as
S
/
I
, where
I
⊆ (
x
1
,…,
x
n
)
2
is a graded ideal of a polynomial ring
S
=
K
[
x
1
,…,
x
n
]. Assume that
n
⩽ 3 and
I
is a strongly stable monomial ideal. We study the symmetric algebra Sym
R
(Syz
1
(
m
)) of the first syzygy module Syz
1
(
m
) of
m
. When the minimal generators of
I
are all of degree 2, the dimension of Sym
R
(Syz
1
(
m
)) is calculated and a lower bound for its depth is obtained. Under suitable conditions, this lower bound is reached. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2021.0508-20 |