On the multiplicity of Laplacian eigenvalues for unicyclic graphs

Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.371-390
Hauptverfasser: Wen, Fei, Huang, Qiongxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 2
container_start_page 371
container_title Czechoslovak Mathematical Journal
container_volume 72
creator Wen, Fei
Huang, Qiongxiang
description Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on graph G for which the value of m G (1) is nondecreasing. As applications, we get the distribution of m U (1) for unicyclic graphs on n vertices. Moreover, for the two largest possible values of m U (1) ∈ { n − 5, n − 3}, the corresponding graphs U are completely determined.
doi_str_mv 10.21136/CMJ.2022.0499-20
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655589322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655589322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5fd8827b664081bc34479eb39ae4311b9513cbaeb01eb1b8b678400b62f1c91f3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmFN8tuPYY1UBBRV1gdmyjdO6SpNgJ0h9e1yKxMR0N3z_f6cPoVsgMwrAxP3i9WVGCaUzwpUqKDlDEygrWijgcI4mhAAUXHB6ia5S2hFCGHA5QfN1i4etx_uxGULfBBeGA-5qvDJ9Y1wwLfZh49sv04w-4bqLeGyDO7hM4k00_TZdo4vaNMnf_M4pen98eFssi9X66XkxXxWOCjkUZf0hJa2sEJxIsI5xXilvmTKeMwCrSmDOGm8JeAtWWlFJTogVtAanoGZTdHfq7WP3mZ8Z9K4bY5tPairKspSKUZopOFEudilFX-s-hr2JBw1E_5jS2ZQ-mtJHU3nLGXrKpMy2Gx__mv8PfQMdQmqn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655589322</pqid></control><display><type>article</type><title>On the multiplicity of Laplacian eigenvalues for unicyclic graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wen, Fei ; Huang, Qiongxiang</creator><creatorcontrib>Wen, Fei ; Huang, Qiongxiang</creatorcontrib><description>Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on graph G for which the value of m G (1) is nondecreasing. As applications, we get the distribution of m U (1) for unicyclic graphs on n vertices. Moreover, for the two largest possible values of m U (1) ∈ { n − 5, n − 3}, the corresponding graphs U are completely determined.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2022.0499-20</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Apexes ; Convex and Discrete Geometry ; Eigenvalues ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations</subject><ispartof>Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.371-390</ispartof><rights>Institute of Mathematics, Czech Academy of Sciences 2022</rights><rights>Institute of Mathematics, Czech Academy of Sciences 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5fd8827b664081bc34479eb39ae4311b9513cbaeb01eb1b8b678400b62f1c91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/CMJ.2022.0499-20$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/CMJ.2022.0499-20$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wen, Fei</creatorcontrib><creatorcontrib>Huang, Qiongxiang</creatorcontrib><title>On the multiplicity of Laplacian eigenvalues for unicyclic graphs</title><title>Czechoslovak Mathematical Journal</title><addtitle>Czech Math J</addtitle><description>Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on graph G for which the value of m G (1) is nondecreasing. As applications, we get the distribution of m U (1) for unicyclic graphs on n vertices. Moreover, for the two largest possible values of m U (1) ∈ { n − 5, n − 3}, the corresponding graphs U are completely determined.</description><subject>Analysis</subject><subject>Apexes</subject><subject>Convex and Discrete Geometry</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmFN8tuPYY1UBBRV1gdmyjdO6SpNgJ0h9e1yKxMR0N3z_f6cPoVsgMwrAxP3i9WVGCaUzwpUqKDlDEygrWijgcI4mhAAUXHB6ia5S2hFCGHA5QfN1i4etx_uxGULfBBeGA-5qvDJ9Y1wwLfZh49sv04w-4bqLeGyDO7hM4k00_TZdo4vaNMnf_M4pen98eFssi9X66XkxXxWOCjkUZf0hJa2sEJxIsI5xXilvmTKeMwCrSmDOGm8JeAtWWlFJTogVtAanoGZTdHfq7WP3mZ8Z9K4bY5tPairKspSKUZopOFEudilFX-s-hr2JBw1E_5jS2ZQ-mtJHU3nLGXrKpMy2Gx__mv8PfQMdQmqn</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wen, Fei</creator><creator>Huang, Qiongxiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>On the multiplicity of Laplacian eigenvalues for unicyclic graphs</title><author>Wen, Fei ; Huang, Qiongxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5fd8827b664081bc34479eb39ae4311b9513cbaeb01eb1b8b678400b62f1c91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Apexes</topic><topic>Convex and Discrete Geometry</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Fei</creatorcontrib><creatorcontrib>Huang, Qiongxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Fei</au><au>Huang, Qiongxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the multiplicity of Laplacian eigenvalues for unicyclic graphs</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><stitle>Czech Math J</stitle><date>2022</date><risdate>2022</risdate><volume>72</volume><issue>2</issue><spage>371</spage><epage>390</epage><pages>371-390</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on graph G for which the value of m G (1) is nondecreasing. As applications, we get the distribution of m U (1) for unicyclic graphs on n vertices. Moreover, for the two largest possible values of m U (1) ∈ { n − 5, n − 3}, the corresponding graphs U are completely determined.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/CMJ.2022.0499-20</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak Mathematical Journal, 2022, Vol.72 (2), p.371-390
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2655589322
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Analysis
Apexes
Convex and Discrete Geometry
Eigenvalues
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
title On the multiplicity of Laplacian eigenvalues for unicyclic graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20multiplicity%20of%20Laplacian%20eigenvalues%20for%20unicyclic%20graphs&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Wen,%20Fei&rft.date=2022&rft.volume=72&rft.issue=2&rft.spage=371&rft.epage=390&rft.pages=371-390&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2022.0499-20&rft_dat=%3Cproquest_cross%3E2655589322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655589322&rft_id=info:pmid/&rfr_iscdi=true