On the multiplicity of Laplacian eigenvalues for unicyclic graphs
Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ), the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U (1) ⩽ n − 2. We then provide two graph operations (i.e., grafting and shifting) on grap...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2022, Vol.72 (2), p.371-390 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a connected graph of order
n
and
U
a unicyclic graph with the same order. We firstly give a sharp bound for
m
G
(
μ
), the multiplicity of a Laplacian eigenvalue
μ
of
G
. As a straightforward result,
m
U
(1) ⩽
n
− 2. We then provide two graph operations (i.e., grafting and shifting) on graph
G
for which the value of
m
G
(1) is nondecreasing. As applications, we get the distribution of
m
U
(1) for unicyclic graphs on
n
vertices. Moreover, for the two largest possible values of
m
U
(1) ∈ {
n
− 5,
n
− 3}, the corresponding graphs
U
are completely determined. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2022.0499-20 |